Ana B Romero-Losada, Christina Arvanitidou, M Elena García-Gómez, María Morales-Pineda, M José Castro-Pérez, Yen Peng Chew, Gerben van Ooijen, Mercedes García-González, Francisco J Romero-Campero
{"title":"Multiomics integration unveils photoperiodic plasticity in the molecular rhythms of marine phytoplankton","authors":"Ana B Romero-Losada, Christina Arvanitidou, M Elena García-Gómez, María Morales-Pineda, M José Castro-Pérez, Yen Peng Chew, Gerben van Ooijen, Mercedes García-González, Francisco J Romero-Campero","doi":"10.1093/plcell/koaf033","DOIUrl":null,"url":null,"abstract":"Earth's tilted rotation and translation around the Sun produce pervasive rhythms on our planet, giving rise to photoperiodic changes in diel cycles. Although marine phytoplankton plays a key role in ecosystems, multiomics analysis of its responses to these periodic environmental signals remains largely unexplored. The marine picoalga Ostreococcus tauri was chosen as a model organism due to its cellular and genomic simplicity. Ostreococcus was subjected to different light regimes to investigate its responses to periodic environmental signals: long summer days, short winter days, constant light, and constant dark conditions. Although less than 5% of the transcriptome maintained oscillations under both constant conditions, 80% presented diel rhythmicity. A drastic reduction in diel rhythmicity was observed at the proteome level, with 39% of the detected proteins oscillating. Photoperiod-specific rhythms were identified for key physiological processes such as the cell cycle, photosynthesis, carotenoid biosynthesis, starch accumulation, and nitrate assimilation. In this study, a photoperiodic plastic global orchestration among transcriptome, proteome, and physiological dynamics was characterized to identify photoperiod-specific temporal offsets between the timing of transcripts, proteins, and physiological responses.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Cell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/plcell/koaf033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Earth's tilted rotation and translation around the Sun produce pervasive rhythms on our planet, giving rise to photoperiodic changes in diel cycles. Although marine phytoplankton plays a key role in ecosystems, multiomics analysis of its responses to these periodic environmental signals remains largely unexplored. The marine picoalga Ostreococcus tauri was chosen as a model organism due to its cellular and genomic simplicity. Ostreococcus was subjected to different light regimes to investigate its responses to periodic environmental signals: long summer days, short winter days, constant light, and constant dark conditions. Although less than 5% of the transcriptome maintained oscillations under both constant conditions, 80% presented diel rhythmicity. A drastic reduction in diel rhythmicity was observed at the proteome level, with 39% of the detected proteins oscillating. Photoperiod-specific rhythms were identified for key physiological processes such as the cell cycle, photosynthesis, carotenoid biosynthesis, starch accumulation, and nitrate assimilation. In this study, a photoperiodic plastic global orchestration among transcriptome, proteome, and physiological dynamics was characterized to identify photoperiod-specific temporal offsets between the timing of transcripts, proteins, and physiological responses.