The homeotic gene PhDEF regulates production of volatiles in petunia flowers by activating EOBI and EOBII

Dominika Bednarczyk, Oded Skaliter, Shane Kerzner, Tania Masci, Elena Shklarman, Ekaterina Shor, Alexander Vainstein
{"title":"The homeotic gene PhDEF regulates production of volatiles in petunia flowers by activating EOBI and EOBII","authors":"Dominika Bednarczyk, Oded Skaliter, Shane Kerzner, Tania Masci, Elena Shklarman, Ekaterina Shor, Alexander Vainstein","doi":"10.1093/plcell/koaf027","DOIUrl":null,"url":null,"abstract":"In petunia (Petunia x hybrida), MADS-box homeotic genes dictate floral organ identity. For instance, DEFICIENS (PhDEF), GLOBOSA1, and GLOBOSA2 (PhGLO1/2) are responsible for petal and stamen identity. However, whether homeotic genes, particularly PhDEF, have a function at the later stages of flower development, remains elusive. In petunia flowers, scent production initiates at anthesis, when the flower is ready for pollination, and is triggered by activation of EMISSION OF BENZENOIDS I (EOBI) and EOBII, MYB transcriptional regulators of scent-related genes. Here, we revealed the role of PhDEF in mature flowers, showing that it activates scent production. PhDEF suppression using a transient viral system in petunia flowers led to a significant reduction in volatile emission and pool levels, and in the transcript levels of scent-related transcriptional regulators and enzymes. Promoter activity assays demonstrated that PhDEF activates EOBI, EOBII and the phenylpropanoid biosynthesis genes L-PHENYLALANINE AMMONIA LYASE and PHENYLACETALDEHYDE SYNTHASE. Our findings underscore the importance of PhDEF in petunia flower development from initiation to maturation and in coordinating petal specification and the establishment of showy pollination-related traits.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"140 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Cell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/plcell/koaf027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In petunia (Petunia x hybrida), MADS-box homeotic genes dictate floral organ identity. For instance, DEFICIENS (PhDEF), GLOBOSA1, and GLOBOSA2 (PhGLO1/2) are responsible for petal and stamen identity. However, whether homeotic genes, particularly PhDEF, have a function at the later stages of flower development, remains elusive. In petunia flowers, scent production initiates at anthesis, when the flower is ready for pollination, and is triggered by activation of EMISSION OF BENZENOIDS I (EOBI) and EOBII, MYB transcriptional regulators of scent-related genes. Here, we revealed the role of PhDEF in mature flowers, showing that it activates scent production. PhDEF suppression using a transient viral system in petunia flowers led to a significant reduction in volatile emission and pool levels, and in the transcript levels of scent-related transcriptional regulators and enzymes. Promoter activity assays demonstrated that PhDEF activates EOBI, EOBII and the phenylpropanoid biosynthesis genes L-PHENYLALANINE AMMONIA LYASE and PHENYLACETALDEHYDE SYNTHASE. Our findings underscore the importance of PhDEF in petunia flower development from initiation to maturation and in coordinating petal specification and the establishment of showy pollination-related traits.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multiomics integration unveils photoperiodic plasticity in the molecular rhythms of marine phytoplankton Melatonin confers saline-alkali tolerance in tomato by alleviating nitrosative damage and S-nitrosylation of H+-ATPase 2 Maize COMPACT PLANT 3 regulates plant architecture and facilitates high-density planting The maize GSK3-like kinase ZmSK1 negatively regulates drought tolerance by phosphorylating the transcription factor ZmCPP2 The homeotic gene PhDEF regulates production of volatiles in petunia flowers by activating EOBI and EOBII
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1