Toward Higher Energy Density All-Solid-State Batteries by Production of Freestanding Thin Solid Sulfidic Electrolyte Membranes in a Roll-to-Roll Process

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Advanced Energy Materials Pub Date : 2025-01-10 DOI:10.1002/aenm.202404790
Maria Rosner, Sahin Cangaz, Arthur Dupuy, Felix Hippauf, Susanne Dörfler, Thomas Abendroth, Benjamin Schumm, Holger Althues, Stefan Kaskel
{"title":"Toward Higher Energy Density All-Solid-State Batteries by Production of Freestanding Thin Solid Sulfidic Electrolyte Membranes in a Roll-to-Roll Process","authors":"Maria Rosner, Sahin Cangaz, Arthur Dupuy, Felix Hippauf, Susanne Dörfler, Thomas Abendroth, Benjamin Schumm, Holger Althues, Stefan Kaskel","doi":"10.1002/aenm.202404790","DOIUrl":null,"url":null,"abstract":"All-solid-state batteries (SSB) show great promise for the advancement of high-energy batteries. To maximize the energy density, a key research interest lies in the development of ultrathin and highly conductive solid electrolyte (SE) layers. In this work, thin and flexible sulfide solid electrolyte membranes are fabricated and laminated onto a non-woven fabric using a scalable and solvent-free, continuous roll-to-roll process (DRYtraec). These membranes show significantly improved tensile strength compared to unsupported sheets, which facilitates cell assembly and allows a continuous component production using a single-step calendering process. By tuning the thickness, densified membranes with thicknesses ranging from 40 to 160 µm are obtained after a compression step. The resulting SE membranes retain a high ionic conductivity (1.6 mS cm<sup>−1</sup>) at room temperature. An excellent rate capability is demonstrated in a SSB pouch cell with a Li<sub>2</sub>O–ZrO<sub>2</sub>-coated LiNi<sub>0.9</sub>C<sub>0.05</sub>Mn<sub>0.05</sub>O<sub>2</sub> cathode, a 55 µm thin SE membrane, and a columnar silicon anode fabricated by a scalable physical vapor deposition process. At stack level, a promising energy density of 673 Wh L<sup>−1</sup> (and specific energy of 247 Wh kg<sup>−1</sup>) is achieved, showcasing the potential for high energy densities by reducing the SE membrane thickness while retaining good mechanical properties.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"36 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202404790","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

All-solid-state batteries (SSB) show great promise for the advancement of high-energy batteries. To maximize the energy density, a key research interest lies in the development of ultrathin and highly conductive solid electrolyte (SE) layers. In this work, thin and flexible sulfide solid electrolyte membranes are fabricated and laminated onto a non-woven fabric using a scalable and solvent-free, continuous roll-to-roll process (DRYtraec). These membranes show significantly improved tensile strength compared to unsupported sheets, which facilitates cell assembly and allows a continuous component production using a single-step calendering process. By tuning the thickness, densified membranes with thicknesses ranging from 40 to 160 µm are obtained after a compression step. The resulting SE membranes retain a high ionic conductivity (1.6 mS cm−1) at room temperature. An excellent rate capability is demonstrated in a SSB pouch cell with a Li2O–ZrO2-coated LiNi0.9C0.05Mn0.05O2 cathode, a 55 µm thin SE membrane, and a columnar silicon anode fabricated by a scalable physical vapor deposition process. At stack level, a promising energy density of 673 Wh L−1 (and specific energy of 247 Wh kg−1) is achieved, showcasing the potential for high energy densities by reducing the SE membrane thickness while retaining good mechanical properties.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在卷对卷工艺中生产独立薄固体硫化物电解质膜以实现更高能量密度的全固态电池
全固态电池(SSB)在高能电池的发展中显示出巨大的前景。为了最大限度地提高能量密度,一个关键的研究方向是开发超薄和高导电性的固体电解质(SE)层。在这项工作中,使用可扩展、无溶剂、连续卷对卷工艺(DRYtraec),制造了薄而柔性的硫化物固体电解质膜,并将其层压在无纺布上。与无支撑膜相比,这些膜的抗拉强度显著提高,有利于电池组装,并允许使用单步压延工艺连续生产组件。通过调整厚度,在压缩步骤后获得厚度从40到160 μ m的致密膜。所得的SE膜在室温下保持高离子电导率(1.6 mS cm−1)。采用可扩展的物理气相沉积工艺,采用li2o - zro2涂层LiNi0.9C0.05Mn0.05O2阴极,55µm薄SE膜和柱状硅阳极制备的SSB袋状电池证明了优异的速率能力。在层叠层上,实现了673 Wh L−1的能量密度(247 Wh kg−1的比能),通过减少SE膜厚度同时保持良好的机械性能,展示了高能量密度的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
期刊最新文献
Advancing Humidity‐Resistant Triboelectric Nanogenerators Through MoS₂‐Encapsulated SiO₂ Nanoparticles for Self‐Powered Gas Sensing Applications Boosting the Activity and Stability of 3‐Hydroxyphenothiazine Derivatives for Aqueous Organic Flow Batteries Bridged‐Ring Structure Facilitating Ultrahigh Utilization of Active Sites in Organic Molecules for High‐Performance Aqueous Batteries How Shallow and Deep Defects Drive Carrier Dynamics in Tin-Iodide Perovskites Toward Green Processing of Perovskite Solar Cells: Protic Ionic Liquids Enable Water- and Alcohol-Based MAPbI3 Precursors Inks for Slot-Die Coating
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1