Enhanced bone cement for fixation of prosthetic joint utilizing nanoparticles

IF 4.2 3区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of Materials Science: Materials in Medicine Pub Date : 2025-01-13 DOI:10.1007/s10856-024-06848-1
Safaa Gamal, Mina Mikhail, Nancy Salem, Mohamed Tarek EL-Wakad, Reda Abdelbaset
{"title":"Enhanced bone cement for fixation of prosthetic joint utilizing nanoparticles","authors":"Safaa Gamal,&nbsp;Mina Mikhail,&nbsp;Nancy Salem,&nbsp;Mohamed Tarek EL-Wakad,&nbsp;Reda Abdelbaset","doi":"10.1007/s10856-024-06848-1","DOIUrl":null,"url":null,"abstract":"<div><p>Bone cement is commonly utilized to secure prosthetic joints in the body because of its robust fixation, stability, biocompatibility, and immediate load-bearing capability. However, issues such as loosening, leakage, and insufficient bioactivity can lead to its failure. Therefore, improving its mechanical, physical, and biological properties is crucial for enhancing its efficiency. This study examines the impact of incorporating four different nanomaterials—Titanium Dioxide (TiO<sub>2</sub>), Magnesium Oxide (MgO), Calcium Phosphate (Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>), and Alumina Oxide (Al<sub>2</sub>O<sub>3</sub>)—into bone cement on its mechanical, physical, and biological properties. TiO<sub>2</sub> and Al<sub>2</sub>O<sub>3</sub> nanoparticles are selected to enhance the compression strength of bone cement, thereby preventing loosening. Magnesium Oxide (MgO) and Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> nanoparticles are chosen to improve cell adhesion and reducing the risk of cement leakage. Five specimens were prepared: the first with 100% pure bone cement powder, the second with 98% pure bone cement powder and modified with 2% MgO and TiO2, and the remaining three with 95% pure bone cement powder and modified with 5% varying ratios of MgO, TiO<sub>2</sub>, Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, and Al<sub>2</sub>O<sub>3</sub>. Compression, tensile, hardness, and bending strengths were assessed to determine improvements in mechanical properties. Setting temperature, porosity, and degradation were measured to evaluate physical properties. Cell adhesion and toxicity tests were conducted to examine the surface structure and biological properties. The results demonstrated that the modified specimens increased compression strength by 8.14%, tensile strength by 3.4%, and bending strength by 4.96%. Porosity, degradation, and setting temperature in modified specimens increased by 3.24%, 0.64%, and 5.17% respectively pure bone cement values. Cell adhesion in modified bone cement specimens showed normal attachment when scanned with FE-SEM. All of the tested modified specimens showed no toxicity, except for specimens with 2% Al<sub>2</sub>O<sub>3</sub> that showed 25% toxicity which could be averted by employing antibiotics.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"36 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10856-024-06848-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Medicine","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10856-024-06848-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Bone cement is commonly utilized to secure prosthetic joints in the body because of its robust fixation, stability, biocompatibility, and immediate load-bearing capability. However, issues such as loosening, leakage, and insufficient bioactivity can lead to its failure. Therefore, improving its mechanical, physical, and biological properties is crucial for enhancing its efficiency. This study examines the impact of incorporating four different nanomaterials—Titanium Dioxide (TiO2), Magnesium Oxide (MgO), Calcium Phosphate (Ca3(PO4)2), and Alumina Oxide (Al2O3)—into bone cement on its mechanical, physical, and biological properties. TiO2 and Al2O3 nanoparticles are selected to enhance the compression strength of bone cement, thereby preventing loosening. Magnesium Oxide (MgO) and Ca3(PO4)2 nanoparticles are chosen to improve cell adhesion and reducing the risk of cement leakage. Five specimens were prepared: the first with 100% pure bone cement powder, the second with 98% pure bone cement powder and modified with 2% MgO and TiO2, and the remaining three with 95% pure bone cement powder and modified with 5% varying ratios of MgO, TiO2, Ca3(PO4)2, and Al2O3. Compression, tensile, hardness, and bending strengths were assessed to determine improvements in mechanical properties. Setting temperature, porosity, and degradation were measured to evaluate physical properties. Cell adhesion and toxicity tests were conducted to examine the surface structure and biological properties. The results demonstrated that the modified specimens increased compression strength by 8.14%, tensile strength by 3.4%, and bending strength by 4.96%. Porosity, degradation, and setting temperature in modified specimens increased by 3.24%, 0.64%, and 5.17% respectively pure bone cement values. Cell adhesion in modified bone cement specimens showed normal attachment when scanned with FE-SEM. All of the tested modified specimens showed no toxicity, except for specimens with 2% Al2O3 that showed 25% toxicity which could be averted by employing antibiotics.

Graphical Abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用纳米颗粒增强骨水泥固定假体关节
骨水泥因其牢固的固定、稳定性、生物相容性和即时承重能力而被广泛用于人体假体关节的固定。然而,诸如松动、渗漏和生物活性不足等问题可能导致其失效。因此,提高其机械、物理和生物性能是提高其效率的关键。本研究考察了将四种不同的纳米材料——二氧化钛(TiO2)、氧化镁(MgO)、磷酸钙(Ca3(PO4)2)和氧化铝(Al2O3)——加入骨水泥对其机械、物理和生物性能的影响。选择TiO2和Al2O3纳米颗粒来提高骨水泥的抗压强度,从而防止骨水泥松动。选择氧化镁(MgO)和Ca3(PO4)2纳米颗粒来提高细胞粘附性,降低水泥泄漏的风险。制备了5个标本:第一个为100%纯骨水泥粉,第二个为98%纯骨水泥粉,用2% MgO和TiO2改性,其余3个为95%纯骨水泥粉,用5%不同比例的MgO、TiO2、Ca3(PO4)2和Al2O3改性。对压缩、拉伸、硬度和抗弯强度进行了评估,以确定机械性能的改善。通过测量凝固温度、孔隙度和降解度来评估物理性能。进行了细胞粘附和毒性试验,以检验其表面结构和生物学特性。结果表明,改性后的试样抗压强度提高了8.14%,抗拉强度提高了3.4%,抗弯强度提高了4.96%。改性后的孔隙率、降解率和凝固温度分别比纯骨水泥提高3.24%、0.64%和5.17%。在FE-SEM扫描下,细胞粘附正常。除含有2% Al2O3的样品显示25%的毒性外,所有被测试的改性样品均无毒性,这可以通过使用抗生素来避免。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Science: Materials in Medicine
Journal of Materials Science: Materials in Medicine 工程技术-材料科学:生物材料
CiteScore
8.00
自引率
0.00%
发文量
73
审稿时长
3.5 months
期刊介绍: The Journal of Materials Science: Materials in Medicine publishes refereed papers providing significant progress in the application of biomaterials and tissue engineering constructs as medical or dental implants, prostheses and devices. Coverage spans a wide range of topics from basic science to clinical applications, around the theme of materials in medicine and dentistry. The central element is the development of synthetic and natural materials used in orthopaedic, maxillofacial, cardiovascular, neurological, ophthalmic and dental applications. Special biomedical topics include biomaterial synthesis and characterisation, biocompatibility studies, nanomedicine, tissue engineering constructs and cell substrates, regenerative medicine, computer modelling and other advanced experimental methodologies.
期刊最新文献
Anodized Ti6Al4V-ELI, electroplated with copper is bactericidal against Staphylococcus aureus and enhances macrophage phagocytosis. Unraveling the immunomodulatory and metabolic effects of bioactive glass S53P4 on macrophages in vitro. Development of biomaterials for bone tissue engineering based on bile acids Load-bearing capacity of an experimental dental implant made of Nb-1Zr Protective effect of quercetin loaded on bifunctional periodic mesoporous organosilica against damage induced by irradiation on the male reproductive system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1