Safaa Gamal, Mina Mikhail, Nancy Salem, Mohamed Tarek EL-Wakad, Reda Abdelbaset
{"title":"Enhanced bone cement for fixation of prosthetic joint utilizing nanoparticles","authors":"Safaa Gamal, Mina Mikhail, Nancy Salem, Mohamed Tarek EL-Wakad, Reda Abdelbaset","doi":"10.1007/s10856-024-06848-1","DOIUrl":null,"url":null,"abstract":"<div><p>Bone cement is commonly utilized to secure prosthetic joints in the body because of its robust fixation, stability, biocompatibility, and immediate load-bearing capability. However, issues such as loosening, leakage, and insufficient bioactivity can lead to its failure. Therefore, improving its mechanical, physical, and biological properties is crucial for enhancing its efficiency. This study examines the impact of incorporating four different nanomaterials—Titanium Dioxide (TiO<sub>2</sub>), Magnesium Oxide (MgO), Calcium Phosphate (Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>), and Alumina Oxide (Al<sub>2</sub>O<sub>3</sub>)—into bone cement on its mechanical, physical, and biological properties. TiO<sub>2</sub> and Al<sub>2</sub>O<sub>3</sub> nanoparticles are selected to enhance the compression strength of bone cement, thereby preventing loosening. Magnesium Oxide (MgO) and Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> nanoparticles are chosen to improve cell adhesion and reducing the risk of cement leakage. Five specimens were prepared: the first with 100% pure bone cement powder, the second with 98% pure bone cement powder and modified with 2% MgO and TiO2, and the remaining three with 95% pure bone cement powder and modified with 5% varying ratios of MgO, TiO<sub>2</sub>, Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, and Al<sub>2</sub>O<sub>3</sub>. Compression, tensile, hardness, and bending strengths were assessed to determine improvements in mechanical properties. Setting temperature, porosity, and degradation were measured to evaluate physical properties. Cell adhesion and toxicity tests were conducted to examine the surface structure and biological properties. The results demonstrated that the modified specimens increased compression strength by 8.14%, tensile strength by 3.4%, and bending strength by 4.96%. Porosity, degradation, and setting temperature in modified specimens increased by 3.24%, 0.64%, and 5.17% respectively pure bone cement values. Cell adhesion in modified bone cement specimens showed normal attachment when scanned with FE-SEM. All of the tested modified specimens showed no toxicity, except for specimens with 2% Al<sub>2</sub>O<sub>3</sub> that showed 25% toxicity which could be averted by employing antibiotics.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"36 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10856-024-06848-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Medicine","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10856-024-06848-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Bone cement is commonly utilized to secure prosthetic joints in the body because of its robust fixation, stability, biocompatibility, and immediate load-bearing capability. However, issues such as loosening, leakage, and insufficient bioactivity can lead to its failure. Therefore, improving its mechanical, physical, and biological properties is crucial for enhancing its efficiency. This study examines the impact of incorporating four different nanomaterials—Titanium Dioxide (TiO2), Magnesium Oxide (MgO), Calcium Phosphate (Ca3(PO4)2), and Alumina Oxide (Al2O3)—into bone cement on its mechanical, physical, and biological properties. TiO2 and Al2O3 nanoparticles are selected to enhance the compression strength of bone cement, thereby preventing loosening. Magnesium Oxide (MgO) and Ca3(PO4)2 nanoparticles are chosen to improve cell adhesion and reducing the risk of cement leakage. Five specimens were prepared: the first with 100% pure bone cement powder, the second with 98% pure bone cement powder and modified with 2% MgO and TiO2, and the remaining three with 95% pure bone cement powder and modified with 5% varying ratios of MgO, TiO2, Ca3(PO4)2, and Al2O3. Compression, tensile, hardness, and bending strengths were assessed to determine improvements in mechanical properties. Setting temperature, porosity, and degradation were measured to evaluate physical properties. Cell adhesion and toxicity tests were conducted to examine the surface structure and biological properties. The results demonstrated that the modified specimens increased compression strength by 8.14%, tensile strength by 3.4%, and bending strength by 4.96%. Porosity, degradation, and setting temperature in modified specimens increased by 3.24%, 0.64%, and 5.17% respectively pure bone cement values. Cell adhesion in modified bone cement specimens showed normal attachment when scanned with FE-SEM. All of the tested modified specimens showed no toxicity, except for specimens with 2% Al2O3 that showed 25% toxicity which could be averted by employing antibiotics.
期刊介绍:
The Journal of Materials Science: Materials in Medicine publishes refereed papers providing significant progress in the application of biomaterials and tissue engineering constructs as medical or dental implants, prostheses and devices. Coverage spans a wide range of topics from basic science to clinical applications, around the theme of materials in medicine and dentistry. The central element is the development of synthetic and natural materials used in orthopaedic, maxillofacial, cardiovascular, neurological, ophthalmic and dental applications. Special biomedical topics include biomaterial synthesis and characterisation, biocompatibility studies, nanomedicine, tissue engineering constructs and cell substrates, regenerative medicine, computer modelling and other advanced experimental methodologies.