Direct excitation of Kelvin waves on quantized vortices

IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Nature Physics Pub Date : 2025-01-13 DOI:10.1038/s41567-024-02720-9
Yosuke Minowa, Yuki Yasui, Tomo Nakagawa, Sosuke Inui, Makoto Tsubota, Masaaki Ashida
{"title":"Direct excitation of Kelvin waves on quantized vortices","authors":"Yosuke Minowa, Yuki Yasui, Tomo Nakagawa, Sosuke Inui, Makoto Tsubota, Masaaki Ashida","doi":"10.1038/s41567-024-02720-9","DOIUrl":null,"url":null,"abstract":"<p>Helices and spirals, prevalent across various physical systems, play a crucial role in characterizing symmetry, describing dynamics and enabling unique functionalities, all stemming from their inherent simplicity and chiral nature. Helical excitations on quantized vortices, referred to as Kelvin waves, are one example of such a physical system. Kelvin waves play a vital role in energy dissipation within inviscid quantum fluids. However, deliberately exciting Kelvin waves has proven to be challenging. Here we introduce a controlled method for exciting Kelvin waves on a quantized vortex in superfluid helium-4. We used a charged nanoparticle that oscillates when driven by a time-varying electric field to stimulate Kelvin waves on the vortex. Confirmation of the helical nature of Kelvin waves was achieved through three-dimensional image reconstruction, which provided visual evidence of their complex dynamics. Additionally, we determined the dispersion relation and the phase velocity of the Kelvin wave and identified the vorticity direction, thus enhancing our understanding of quantum fluid behaviour. This work elucidates the dynamics of Kelvin waves and initiates an approach for manipulating and observing quantized vortices in three dimensions, thereby opening avenues for exploring quantum fluidic systems.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"26 1","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-024-02720-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Helices and spirals, prevalent across various physical systems, play a crucial role in characterizing symmetry, describing dynamics and enabling unique functionalities, all stemming from their inherent simplicity and chiral nature. Helical excitations on quantized vortices, referred to as Kelvin waves, are one example of such a physical system. Kelvin waves play a vital role in energy dissipation within inviscid quantum fluids. However, deliberately exciting Kelvin waves has proven to be challenging. Here we introduce a controlled method for exciting Kelvin waves on a quantized vortex in superfluid helium-4. We used a charged nanoparticle that oscillates when driven by a time-varying electric field to stimulate Kelvin waves on the vortex. Confirmation of the helical nature of Kelvin waves was achieved through three-dimensional image reconstruction, which provided visual evidence of their complex dynamics. Additionally, we determined the dispersion relation and the phase velocity of the Kelvin wave and identified the vorticity direction, thus enhancing our understanding of quantum fluid behaviour. This work elucidates the dynamics of Kelvin waves and initiates an approach for manipulating and observing quantized vortices in three dimensions, thereby opening avenues for exploring quantum fluidic systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Physics
Nature Physics 物理-物理:综合
CiteScore
30.40
自引率
2.00%
发文量
349
审稿时长
4-8 weeks
期刊介绍: Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests. The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.
期刊最新文献
Schrödinger cat states of a nuclear spin qudit in silicon Observation of Joule–Thomson photon-gas expansion Direct excitation of Kelvin waves on quantized vortices Confinement in a $${{\mathbb{Z}}}_{2}$$ lattice gauge theory on a quantum computer Interaction-driven breakdown of Aharonov–Bohm caging in flat-band Rydberg lattices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1