Confinement in a $${{\mathbb{Z}}}_{2}$$ lattice gauge theory on a quantum computer

IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Nature Physics Pub Date : 2025-01-13 DOI:10.1038/s41567-024-02723-6
Julius Mildenberger, Wojciech Mruczkiewicz, Jad C. Halimeh, Zhang Jiang, Philipp Hauke
{"title":"Confinement in a $${{\\mathbb{Z}}}_{2}$$ lattice gauge theory on a quantum computer","authors":"Julius Mildenberger, Wojciech Mruczkiewicz, Jad C. Halimeh, Zhang Jiang, Philipp Hauke","doi":"10.1038/s41567-024-02723-6","DOIUrl":null,"url":null,"abstract":"Gauge theories describe the fundamental forces in the standard model of particle physics and play an important role in condensed-matter physics. The constituents of gauge theories, for example, charged matter and electric gauge field, are governed by local gauge constraints, which lead to key phenomena such as the confinement of particles that are not fully understood. In this context, quantum simulators may address questions that are challenging for classical methods. Although engineering gauge constraints is highly demanding, recent advances in quantum computing are beginning to enable digital quantum simulations of gauge theories. Here we simulate confinement dynamics in a $${{\\mathbb{Z}}}_{2}$$ lattice gauge theory on a superconducting quantum processor. Tuning a term that couples only to the electric field produces confinement of charges, a manifestation of the tight bond that the gauge constraint generates between both. Moreover, we show how a modification of the gauge constraint from $${{\\mathbb{Z}}}_{2}$$ towards U(1) symmetry freezes the system dynamics. Our work illustrates the restriction that the underlying gauge constraint imposes on the dynamics of a lattice gauge theory, showcases how gauge constraints can be modified and protected, and promotes the study of other models governed by multibody interactions. Gauge theories host important phenomena such as confinement that are difficult to study theoretically. Advances in quantum computers have now made it possible to perform digital quantum simulations of confinement dynamics in a gauge theory.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"21 2","pages":"312-317"},"PeriodicalIF":17.6000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41567-024-02723-6","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Gauge theories describe the fundamental forces in the standard model of particle physics and play an important role in condensed-matter physics. The constituents of gauge theories, for example, charged matter and electric gauge field, are governed by local gauge constraints, which lead to key phenomena such as the confinement of particles that are not fully understood. In this context, quantum simulators may address questions that are challenging for classical methods. Although engineering gauge constraints is highly demanding, recent advances in quantum computing are beginning to enable digital quantum simulations of gauge theories. Here we simulate confinement dynamics in a $${{\mathbb{Z}}}_{2}$$ lattice gauge theory on a superconducting quantum processor. Tuning a term that couples only to the electric field produces confinement of charges, a manifestation of the tight bond that the gauge constraint generates between both. Moreover, we show how a modification of the gauge constraint from $${{\mathbb{Z}}}_{2}$$ towards U(1) symmetry freezes the system dynamics. Our work illustrates the restriction that the underlying gauge constraint imposes on the dynamics of a lattice gauge theory, showcases how gauge constraints can be modified and protected, and promotes the study of other models governed by multibody interactions. Gauge theories host important phenomena such as confinement that are difficult to study theoretically. Advances in quantum computers have now made it possible to perform digital quantum simulations of confinement dynamics in a gauge theory.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量子计算机上$${{\mathbb{Z}}}_{2}$$晶格规范理论的约束
规范理论描述了粒子物理标准模型中的基本力,在凝聚态物理中起着重要作用。规范理论的组成部分,例如带电物质和电规范场,是由局部规范约束控制的,这导致了一些关键现象,如粒子的约束,这些现象还没有完全被理解。在这种情况下,量子模拟器可以解决对经典方法具有挑战性的问题。尽管工程规范约束要求很高,但量子计算的最新进展开始使规范理论的数字量子模拟成为可能。本文在超导量子处理器上模拟了\({{\mathbb{Z}}}_{2}\)晶格规范理论中的约束动力学。调整只与电场耦合的项会产生电荷限制,这是规范约束在两者之间产生的紧密结合的表现。此外,我们展示了规范约束从\({{\mathbb{Z}}}_{2}\)向U(1)对称的修改如何冻结系统动力学。我们的工作说明了基本规范约束对晶格规范理论动力学的限制,展示了规范约束如何被修改和保护,并促进了多体相互作用控制的其他模型的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Physics
Nature Physics 物理-物理:综合
CiteScore
30.40
自引率
2.00%
发文量
349
审稿时长
4-8 weeks
期刊介绍: Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests. The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.
期刊最新文献
Diffraction minima resolve point scatterers at few hundredths of the wavelength Cyclic jetting enables microbubble-mediated drug delivery Topology shapes dynamics of higher-order networks Universal dissipative dynamics in strongly correlated quantum gases Author Correction: Magnetic flux trapping in hydrogen-rich high-temperature superconductors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1