Itaconate transporter SLC13A3 confers immunotherapy resistance via alkylation-mediated stabilization of PD-L1

IF 27.7 1区 生物学 Q1 CELL BIOLOGY Cell metabolism Pub Date : 2025-01-13 DOI:10.1016/j.cmet.2024.11.012
Yizeng Fan, Weichao Dan, Yuzhao Wang, Zhiqiang Ma, Yanlin Jian, Tianjie Liu, Mengxing Li, Zixi Wang, Yi Wei, Bo Liu, Peng Ding, Yuzeshi Lei, Chendong Guo, Jin Zeng, Xiaolong Yan, Wenyi Wei, Lei Li
{"title":"Itaconate transporter SLC13A3 confers immunotherapy resistance via alkylation-mediated stabilization of PD-L1","authors":"Yizeng Fan, Weichao Dan, Yuzhao Wang, Zhiqiang Ma, Yanlin Jian, Tianjie Liu, Mengxing Li, Zixi Wang, Yi Wei, Bo Liu, Peng Ding, Yuzeshi Lei, Chendong Guo, Jin Zeng, Xiaolong Yan, Wenyi Wei, Lei Li","doi":"10.1016/j.cmet.2024.11.012","DOIUrl":null,"url":null,"abstract":"Itaconate is a metabolite catalyzed by <em>cis-</em>aconitate decarboxylase (ACOD1), which is mainly produced by activated macrophages and secreted into the extracellular environment to exert complex bioactivity. In the tumor microenvironment, itaconate is concentrated and induces an immunosuppressive response. However, whether itaconate can be taken up by tumor cells and its mechanism of action remain largely unclear. Here, we identified solute carrier family 13 member 3 (SLC13A3) as a key protein transporting extracellular itaconate into cells, where it elevates programmed cell death ligand 1 (PD-L1) protein levels and decreases the expression of immunostimulatory molecules, thereby promoting tumor immune evasion. Mechanistically, itaconate alkylates the cysteine 272 residue on PD-L1, antagonizing PD-L1 ubiquitination and degradation. Consequently, SLC13A3 inhibition enhances the efficacy of anti-CTLA-4 (cytotoxic T lymphocyte-associated antigen-4) immunotherapy and improves the overall survival rate in syngeneic mouse tumor models. Collectively, our findings identified SLC13A3 as a key transporter of itaconate and revealed its immunomodulatory role, providing combinatorial strategies to overcome immunotherapy resistance in tumors.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"9 1","pages":""},"PeriodicalIF":27.7000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell metabolism","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cmet.2024.11.012","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Itaconate is a metabolite catalyzed by cis-aconitate decarboxylase (ACOD1), which is mainly produced by activated macrophages and secreted into the extracellular environment to exert complex bioactivity. In the tumor microenvironment, itaconate is concentrated and induces an immunosuppressive response. However, whether itaconate can be taken up by tumor cells and its mechanism of action remain largely unclear. Here, we identified solute carrier family 13 member 3 (SLC13A3) as a key protein transporting extracellular itaconate into cells, where it elevates programmed cell death ligand 1 (PD-L1) protein levels and decreases the expression of immunostimulatory molecules, thereby promoting tumor immune evasion. Mechanistically, itaconate alkylates the cysteine 272 residue on PD-L1, antagonizing PD-L1 ubiquitination and degradation. Consequently, SLC13A3 inhibition enhances the efficacy of anti-CTLA-4 (cytotoxic T lymphocyte-associated antigen-4) immunotherapy and improves the overall survival rate in syngeneic mouse tumor models. Collectively, our findings identified SLC13A3 as a key transporter of itaconate and revealed its immunomodulatory role, providing combinatorial strategies to overcome immunotherapy resistance in tumors.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell metabolism
Cell metabolism 生物-内分泌学与代谢
CiteScore
48.60
自引率
1.40%
发文量
173
审稿时长
2.5 months
期刊介绍: Cell Metabolism is a top research journal established in 2005 that focuses on publishing original and impactful papers in the field of metabolic research.It covers a wide range of topics including diabetes, obesity, cardiovascular biology, aging and stress responses, circadian biology, and many others. Cell Metabolism aims to contribute to the advancement of metabolic research by providing a platform for the publication and dissemination of high-quality research and thought-provoking articles.
期刊最新文献
Maternal circadian rhythms during pregnancy dictate metabolic plasticity in offspring Nuclear adenine activates hnRNPA2B1 to enhance antibacterial innate immunity Itaconate transporter SLC13A3 confers immunotherapy resistance via alkylation-mediated stabilization of PD-L1 Formation of I2+III2 supercomplex rescues respiratory chain defects The other side of the incretin story: GIPR signaling in energy homeostasis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1