Pei Lyu, Wenwen Shi, Yuemei Liu, Rui Ding, Jun Hu, Bin Shang, Heng Pan, Jie Ren, Xin Liu, Weilin Xu
{"title":"Adaptable, Dynamic, and Superhydrophobic Standing-Fiber Surface with Muti-Level Energy Barrier for Anti-Icing","authors":"Pei Lyu, Wenwen Shi, Yuemei Liu, Rui Ding, Jun Hu, Bin Shang, Heng Pan, Jie Ren, Xin Liu, Weilin Xu","doi":"10.1002/adfm.202421174","DOIUrl":null,"url":null,"abstract":"Passive deicing technologies achieved by dynamic superhydrophobic surfaces and slippery substances contribute to widely used anti-icing. However, the constant status of microstructures cannot cater to the changing environment, meanwhile, the energy barrier needs to be improved. Here, a dynamic superhydrophobic standing-fiber surface with a three-level energy barrier is fabricated by electrical flocking technology, which directly utilizes the wind field to assist anti-icing. The standing-fiber surface has low ice adhesion of 2.7 kPa, a high water contact angle of 171.1°, and a long icing delay time of 859 s under −30 °C. The superhydrophobicity contributes to excellent water repellency with a droplet retracting and bouncing distance of 3.53 and 3.75 mm. In the wind field at 9 ms<sup>−1</sup>, the inclined standing-fiber surface theoretically accelerates the motion of the water droplet by 1.5 times compared with the lying-fiber surface. The difference in thermal conductivity between the front and back sides of the standing-fiber surface makes it an ideal candidate for designing anti-icing, deicing, and thermal insulation clothes.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"51 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202421174","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Passive deicing technologies achieved by dynamic superhydrophobic surfaces and slippery substances contribute to widely used anti-icing. However, the constant status of microstructures cannot cater to the changing environment, meanwhile, the energy barrier needs to be improved. Here, a dynamic superhydrophobic standing-fiber surface with a three-level energy barrier is fabricated by electrical flocking technology, which directly utilizes the wind field to assist anti-icing. The standing-fiber surface has low ice adhesion of 2.7 kPa, a high water contact angle of 171.1°, and a long icing delay time of 859 s under −30 °C. The superhydrophobicity contributes to excellent water repellency with a droplet retracting and bouncing distance of 3.53 and 3.75 mm. In the wind field at 9 ms−1, the inclined standing-fiber surface theoretically accelerates the motion of the water droplet by 1.5 times compared with the lying-fiber surface. The difference in thermal conductivity between the front and back sides of the standing-fiber surface makes it an ideal candidate for designing anti-icing, deicing, and thermal insulation clothes.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.