Liquid Water Molecular Connected Quantum Dots for Self-Driven Photodetector

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2025-01-17 DOI:10.1002/adfm.202420182
Zhihao Qian, Minhui Yang, Shisheng Lin
{"title":"Liquid Water Molecular Connected Quantum Dots for Self-Driven Photodetector","authors":"Zhihao Qian, Minhui Yang, Shisheng Lin","doi":"10.1002/adfm.202420182","DOIUrl":null,"url":null,"abstract":"The interactions between solid quantum dots (QDs) are weak as the excitons in QDs are difficult to be dissolved into electrons and holes, which limits the performance of QDs based photodetector. Herein, through putting QDs inside the water, it is intriguingly found that excitons are dissolved into electrons and holes by the interaction between QDs and water molecules, which further contribute to the formation of long-range electron/hole transport channels within the water. At zero voltage bias, a transient photo-polarized current is repeatedly produced, the specific responsivity and detectivity of liquid-based photodetector with molybdenum disulfide (MoS<sub>2</sub>) QDs aqueous suspension can reach 188.1 mA W<sup>−1</sup> and 1.164 × 10<sup>10</sup> Jones with 820 nm illumination, respectively. The specific spectra of photodetectors can be promoted by selected QDs with different absorption peaks. Actually, the responsivity of liquid-based photodetector with cadmium selenide (CdSe) QDs exhibits the most significant enhancement effect at the peak of exciton absorption wavelength of QDs, as much more excitons in QDs can be dissolved into electrons and holes. It is anticipated that the ability to dissolve excitons in QDs and form conducting channels by dynamic construction of water molecules will bring possibilities for high-performance optoelectronic devices across a wide range of application scenarios.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"205 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202420182","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The interactions between solid quantum dots (QDs) are weak as the excitons in QDs are difficult to be dissolved into electrons and holes, which limits the performance of QDs based photodetector. Herein, through putting QDs inside the water, it is intriguingly found that excitons are dissolved into electrons and holes by the interaction between QDs and water molecules, which further contribute to the formation of long-range electron/hole transport channels within the water. At zero voltage bias, a transient photo-polarized current is repeatedly produced, the specific responsivity and detectivity of liquid-based photodetector with molybdenum disulfide (MoS2) QDs aqueous suspension can reach 188.1 mA W−1 and 1.164 × 1010 Jones with 820 nm illumination, respectively. The specific spectra of photodetectors can be promoted by selected QDs with different absorption peaks. Actually, the responsivity of liquid-based photodetector with cadmium selenide (CdSe) QDs exhibits the most significant enhancement effect at the peak of exciton absorption wavelength of QDs, as much more excitons in QDs can be dissolved into electrons and holes. It is anticipated that the ability to dissolve excitons in QDs and form conducting channels by dynamic construction of water molecules will bring possibilities for high-performance optoelectronic devices across a wide range of application scenarios.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Liquid Water Molecular Connected Quantum Dots for Self-Driven Photodetector Heterogeneous Doping via Methyl-Encapsulated Fumed Silica Enabling Weak Solvated and Self-Purified Electrolyte in Long-Term High-Voltage Lithium Batteries Hierarchical Composite Polyimide Aerogels with Hyperbranched Siloxane for High Electromagnetic Wave Absorption Phosphorus-Mediated Selenium Dual Atoms for Bifunctional Oxygen Reactions and Long-Life Low-Temperature Energy Conversion Electrically Detachable and Fully Recyclable Pressure Sensitive Ionoadhesive Tapes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1