Yang Xu, Ruiyang Tan, Xiaolin Jiang, Luwei Bo, Yandong Wang, Haocheng Xu, Ping Chen, Kai Xi
{"title":"Hierarchical Composite Polyimide Aerogels with Hyperbranched Siloxane for High Electromagnetic Wave Absorption","authors":"Yang Xu, Ruiyang Tan, Xiaolin Jiang, Luwei Bo, Yandong Wang, Haocheng Xu, Ping Chen, Kai Xi","doi":"10.1002/adfm.202421389","DOIUrl":null,"url":null,"abstract":"Hierarchical pore structures offer a promising strategy for developing high-performance electromagnetic wave (EMW) absorption materials with a broad effective absorption bandwidth (EAB, reflection loss −10 dB) and reduced thickness. In this work, hyperbranched siloxane (HBPSi), featuring unparalleled 3D structure and high thermal stability, is integrated into polyimide (PI)/carbon nanotube (CNT) composite aerogels to fabricate a hierarchical pore architecture simply, resulting composite PI aerogels with macro-mesoporous structures exhibit exceptional EMW absorption, excellent mechanical properties, and low thermal conductivities, even with a minimal CNT content of just 7.45 wt.%. This intricate hierarchical pore structure of composite PI aerogels optimizes impedance matching with air, signifying augmented multiple reflections and scattering in the 3D porous structure, thus, the composite PI aerogel with a low density (0.123 g cm<sup>−3</sup>), minimum reflection loss (RL<sub>min</sub>) of −51.13 dB and an EAB of 4.4 GHz at a matching thickness of 3.4 mm. The innovative construction of PI/CNT composite aerogels featuring hierarchical structures provides a promising avenue for the advancement of high-efficiency EMW absorption materials.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"30 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202421389","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hierarchical pore structures offer a promising strategy for developing high-performance electromagnetic wave (EMW) absorption materials with a broad effective absorption bandwidth (EAB, reflection loss −10 dB) and reduced thickness. In this work, hyperbranched siloxane (HBPSi), featuring unparalleled 3D structure and high thermal stability, is integrated into polyimide (PI)/carbon nanotube (CNT) composite aerogels to fabricate a hierarchical pore architecture simply, resulting composite PI aerogels with macro-mesoporous structures exhibit exceptional EMW absorption, excellent mechanical properties, and low thermal conductivities, even with a minimal CNT content of just 7.45 wt.%. This intricate hierarchical pore structure of composite PI aerogels optimizes impedance matching with air, signifying augmented multiple reflections and scattering in the 3D porous structure, thus, the composite PI aerogel with a low density (0.123 g cm−3), minimum reflection loss (RLmin) of −51.13 dB and an EAB of 4.4 GHz at a matching thickness of 3.4 mm. The innovative construction of PI/CNT composite aerogels featuring hierarchical structures provides a promising avenue for the advancement of high-efficiency EMW absorption materials.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.