Computer Simulation of Sulfated Cyclodextrin-Based Enantioselective Separation of Weak Bases With Partial, High-Concentration Filling of the Chiral Selector and Analyte Detection on the Cathodic Side.
{"title":"Computer Simulation of Sulfated Cyclodextrin-Based Enantioselective Separation of Weak Bases With Partial, High-Concentration Filling of the Chiral Selector and Analyte Detection on the Cathodic Side.","authors":"Friederike A Sandbaumhüter, Wolfgang Thormann","doi":"10.1002/elps.202400213","DOIUrl":null,"url":null,"abstract":"<p><p>Computer simulation was utilized to characterize the electrophoretic processes occurring during the enantioselective capillary electrophoresis-mass spectrometry (CE-MS) analysis of ketamine, norketamine, and hydroxynorketamine in a system with partial filling of the capillary with 19 mM (equals 5%) of highly sulfated γ-cyclodextrin (HS-γ-CD) and analyte detection on the cathodic side. Provided that the sample is applied without or with a small amount of the chiral selector, analytes become quickly focused and separated in the thereby formed HS-γ-CD gradient at the cathodic end of the sample compartment. This gradient broadens with time, remains stationary, and gradually reduces its span from the lower side due to diffusion such that analytes with high affinity to the anionic selector become released onto the other side of the focusing gradient where anionic migration and defocusing occur concomitantly. The analytes that remain focused until the migrating HS-γ-CD concentration boundary arrives at the cathodic end of the sample compartment become gradually released into the cathodic part and migrate in the absence of HS-γ-CD toward the detector. This behavior is dependent on the length of the HS-γ-CD zone in the cathodic part of the electrophoretic column, the initial sample zone length, and the sample matrix. The data presented reveal the possibility that only one of the enantiomers of an analyte migrates toward the detector, whereas the other is lost for the analysis, or that both enantiomers migrate toward the cathode but do not separate. Enantiomer separation followed by migration toward the cathode can only be achieved for analytes with rather low complexation constants, such as hydroxynorketamine assessed in this work, and is dependent on the slope of the HS-γ-CD focusing gradient. The gained insights illustrate that dynamic simulation is an indispensable tool to investigate electrophoretic processes of complex systems.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELECTROPHORESIS","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/elps.202400213","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Computer simulation was utilized to characterize the electrophoretic processes occurring during the enantioselective capillary electrophoresis-mass spectrometry (CE-MS) analysis of ketamine, norketamine, and hydroxynorketamine in a system with partial filling of the capillary with 19 mM (equals 5%) of highly sulfated γ-cyclodextrin (HS-γ-CD) and analyte detection on the cathodic side. Provided that the sample is applied without or with a small amount of the chiral selector, analytes become quickly focused and separated in the thereby formed HS-γ-CD gradient at the cathodic end of the sample compartment. This gradient broadens with time, remains stationary, and gradually reduces its span from the lower side due to diffusion such that analytes with high affinity to the anionic selector become released onto the other side of the focusing gradient where anionic migration and defocusing occur concomitantly. The analytes that remain focused until the migrating HS-γ-CD concentration boundary arrives at the cathodic end of the sample compartment become gradually released into the cathodic part and migrate in the absence of HS-γ-CD toward the detector. This behavior is dependent on the length of the HS-γ-CD zone in the cathodic part of the electrophoretic column, the initial sample zone length, and the sample matrix. The data presented reveal the possibility that only one of the enantiomers of an analyte migrates toward the detector, whereas the other is lost for the analysis, or that both enantiomers migrate toward the cathode but do not separate. Enantiomer separation followed by migration toward the cathode can only be achieved for analytes with rather low complexation constants, such as hydroxynorketamine assessed in this work, and is dependent on the slope of the HS-γ-CD focusing gradient. The gained insights illustrate that dynamic simulation is an indispensable tool to investigate electrophoretic processes of complex systems.
期刊介绍:
ELECTROPHORESIS is an international journal that publishes original manuscripts on all aspects of electrophoresis, and liquid phase separations (e.g., HPLC, micro- and nano-LC, UHPLC, micro- and nano-fluidics, liquid-phase micro-extractions, etc.).
Topics include new or improved analytical and preparative methods, sample preparation, development of theory, and innovative applications of electrophoretic and liquid phase separations methods in the study of nucleic acids, proteins, carbohydrates natural products, pharmaceuticals, food analysis, environmental species and other compounds of importance to the life sciences.
Papers in the areas of microfluidics and proteomics, which are not limited to electrophoresis-based methods, will also be accepted for publication. Contributions focused on hyphenated and omics techniques are also of interest. Proteomics is within the scope, if related to its fundamentals and new technical approaches. Proteomics applications are only considered in particular cases.
Papers describing the application of standard electrophoretic methods will not be considered.
Papers on nanoanalysis intended for publication in ELECTROPHORESIS should focus on one or more of the following topics:
• Nanoscale electrokinetics and phenomena related to electric double layer and/or confinement in nano-sized geometry
• Single cell and subcellular analysis
• Nanosensors and ultrasensitive detection aspects (e.g., involving quantum dots, "nanoelectrodes" or nanospray MS)
• Nanoscale/nanopore DNA sequencing (next generation sequencing)
• Micro- and nanoscale sample preparation
• Nanoparticles and cells analyses by dielectrophoresis
• Separation-based analysis using nanoparticles, nanotubes and nanowires.