A pose estimation approach for discarded stacked smartphones recycling: Based on instance segmentation and point cloud registration.

IF 7.1 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Waste management Pub Date : 2025-01-11 DOI:10.1016/j.wasman.2024.12.045
Jie Li, XueJun Hu, Hangbin Zheng, Gaohua Zhang
{"title":"A pose estimation approach for discarded stacked smartphones recycling: Based on instance segmentation and point cloud registration.","authors":"Jie Li, XueJun Hu, Hangbin Zheng, Gaohua Zhang","doi":"10.1016/j.wasman.2024.12.045","DOIUrl":null,"url":null,"abstract":"<p><p>With the rapid increase in end-of-life smartphones, enhancing the automation and intelligence of their recycling processes has become an urgent challenge. At present, the disassembly of discarded smartphones predominantly relies on manual labor, which is not only inefficient but also associated with environmental pollution and high labor intensity. In the context of end-of-life smartphone recycling, complex situations such as stacking and occlusion are commonly encountered. Accurate pose information can provide critical data for precise robotic grasping, thereby improving the level of automation and efficiency in recycling and disassembly. This research proposes a pose estimation method tailored for stacked discarded smartphones, integrating an improved Mask R-CNN instance segmentation model with Iterative Closest Point (ICP) point cloud registration technology. The method begins by accurately segmenting stacked smartphones using both real and synthetic datasets. Subsequently, pose information is extracted through the proposed estimation approach, providing critical data to guide the robotic arm's grasping actions, thereby improving sorting efficiency and minimizing manual intervention. To enhance its practical applicability, a pose recognition interactive system is developed, enabling visualization and dynamic interaction with pose data. Experimental results demonstrate the effectiveness of the transfer learning algorithm, which leverages a large volume of synthetic data combined with a small batch of real-world data. This research offers valuable theoretical insights and technical solutions for advancing the automation and intelligent disassembly of end-of-life smartphones.</p>","PeriodicalId":23969,"journal":{"name":"Waste management","volume":"194 ","pages":"149-157"},"PeriodicalIF":7.1000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.wasman.2024.12.045","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid increase in end-of-life smartphones, enhancing the automation and intelligence of their recycling processes has become an urgent challenge. At present, the disassembly of discarded smartphones predominantly relies on manual labor, which is not only inefficient but also associated with environmental pollution and high labor intensity. In the context of end-of-life smartphone recycling, complex situations such as stacking and occlusion are commonly encountered. Accurate pose information can provide critical data for precise robotic grasping, thereby improving the level of automation and efficiency in recycling and disassembly. This research proposes a pose estimation method tailored for stacked discarded smartphones, integrating an improved Mask R-CNN instance segmentation model with Iterative Closest Point (ICP) point cloud registration technology. The method begins by accurately segmenting stacked smartphones using both real and synthetic datasets. Subsequently, pose information is extracted through the proposed estimation approach, providing critical data to guide the robotic arm's grasping actions, thereby improving sorting efficiency and minimizing manual intervention. To enhance its practical applicability, a pose recognition interactive system is developed, enabling visualization and dynamic interaction with pose data. Experimental results demonstrate the effectiveness of the transfer learning algorithm, which leverages a large volume of synthetic data combined with a small batch of real-world data. This research offers valuable theoretical insights and technical solutions for advancing the automation and intelligent disassembly of end-of-life smartphones.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Waste management
Waste management 环境科学-工程:环境
CiteScore
15.60
自引率
6.20%
发文量
492
审稿时长
39 days
期刊介绍: Waste Management is devoted to the presentation and discussion of information on solid wastes,it covers the entire lifecycle of solid. wastes. Scope: Addresses solid wastes in both industrialized and economically developing countries Covers various types of solid wastes, including: Municipal (e.g., residential, institutional, commercial, light industrial) Agricultural Special (e.g., C and D, healthcare, household hazardous wastes, sewage sludge)
期刊最新文献
Evaluating drivers of PM2.5 air pollution at urban scales using interpretable machine learning. Machine learning-assisted assessment of municipal solid waste thermal treatment efficacy via rapid image recognition and visual analysis. Gut microbial communities and transcriptional profiles of black soldier fly (Hermitia illucens) larvae fed on fermented sericulture waste. A pose estimation approach for discarded stacked smartphones recycling: Based on instance segmentation and point cloud registration. Identification of waste lithium-ion battery cell chemistry for recycling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1