Isolation, cytotoxicity evaluation, and molecular docking of 3,4,3'-tri-O-methylflavellagic acid from Anogeissus leiocarpus (DC.) Guill. & Perr. root.

IF 1.9 3区 化学 Q3 CHEMISTRY, APPLIED Natural Product Research Pub Date : 2025-01-11 DOI:10.1080/14786419.2025.2451218
Yemi A Adekunle, Babatunde B Samuel, Chinemenma M Ezeude, Lutfun Nahar, Amos A Fatokun, Satyajit D Sarker
{"title":"Isolation, cytotoxicity evaluation, and molecular docking of 3,4,3'-tri-<i>O</i>-methylflavellagic acid from <i>Anogeissus leiocarpus</i> (DC.) Guill. & Perr. root.","authors":"Yemi A Adekunle, Babatunde B Samuel, Chinemenma M Ezeude, Lutfun Nahar, Amos A Fatokun, Satyajit D Sarker","doi":"10.1080/14786419.2025.2451218","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer kills about 10 million people every year. Medicinal plants remain a major source in the global search for anticancer drugs. In this study, 3,4,3'-tri-<i>O</i>-methylflavellagic acid (MFA) was isolated from the methanol root extract of <i>Anogeissus leiocarpus</i>. The structure was determined by 1D- and 2D-NMR data. The cytotoxic effects of MFA were evaluated against human breast (MCF-7), colorectal (Caco-2), and cervical (HeLa) cancer cell lines using the 3-[4,5-dimethylthiazole-2-yl] 3,5-diphenyltetrazolium bromide assay. A multi-protein target screening <i>via</i> molecular docking was conducted against ten cancer-related proteins, and ADMET properties were evaluated. MFA exhibited the most potent activity against Caco-2 (IC<sub>50</sub>: 46.75 ± 13.00 µM). Molecular docking analysis showed that MFA had a strong binding affinity for the colchicine-binding site of <i>αβ</i>-tubulin and polo-like kinase-1 (binding energies: -8.5 and -8.4 kcal/mol, respectively). MFA also satisfied the Lipinski's Rule of Five. MFA could, therefore, potentially serve as a scaffold for developing new anticancer molecules.</p>","PeriodicalId":18990,"journal":{"name":"Natural Product Research","volume":" ","pages":"1-8"},"PeriodicalIF":1.9000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Product Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/14786419.2025.2451218","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Cancer kills about 10 million people every year. Medicinal plants remain a major source in the global search for anticancer drugs. In this study, 3,4,3'-tri-O-methylflavellagic acid (MFA) was isolated from the methanol root extract of Anogeissus leiocarpus. The structure was determined by 1D- and 2D-NMR data. The cytotoxic effects of MFA were evaluated against human breast (MCF-7), colorectal (Caco-2), and cervical (HeLa) cancer cell lines using the 3-[4,5-dimethylthiazole-2-yl] 3,5-diphenyltetrazolium bromide assay. A multi-protein target screening via molecular docking was conducted against ten cancer-related proteins, and ADMET properties were evaluated. MFA exhibited the most potent activity against Caco-2 (IC50: 46.75 ± 13.00 µM). Molecular docking analysis showed that MFA had a strong binding affinity for the colchicine-binding site of αβ-tubulin and polo-like kinase-1 (binding energies: -8.5 and -8.4 kcal/mol, respectively). MFA also satisfied the Lipinski's Rule of Five. MFA could, therefore, potentially serve as a scaffold for developing new anticancer molecules.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Natural Product Research
Natural Product Research 化学-医药化学
CiteScore
5.10
自引率
9.10%
发文量
605
审稿时长
2.1 months
期刊介绍: The aim of Natural Product Research is to publish important contributions in the field of natural product chemistry. The journal covers all aspects of research in the chemistry and biochemistry of naturally occurring compounds. The communications include coverage of work on natural substances of land and sea and of plants, microbes and animals. Discussions of structure elucidation, synthesis and experimental biosynthesis of natural products as well as developments of methods in these areas are welcomed in the journal. Finally, research papers in fields on the chemistry-biology boundary, eg. fermentation chemistry, plant tissue culture investigations etc., are accepted into the journal. Natural Product Research issues will be subtitled either ""Part A - Synthesis and Structure"" or ""Part B - Bioactive Natural Products"". for details on this , see the forthcoming articles section. All manuscript submissions are subject to initial appraisal by the Editor, and, if found suitable for further consideration, to peer review by independent, anonymous expert referees. All peer review is single blind and submission is online via ScholarOne Manuscripts.
期刊最新文献
Evaluation of the antiulcer activity of ethanolic extract and solvent fractions of Calendula tripterocarpa Rupr. in experimental rats and their DART-ToF-MS profiling. Generation of glucosylantimycins by heterologous expression of a promiscuous glycosyltransferase in a deepsea-derived Streptomyces. Antifungal activity of different extractions of drone larvae (apilarnil). Phenylpropanoids and polyacetylenes from the roots of Adenophora triphylla. Sophaline B inhibits non-small cell lung cancer by activating NLRP3/caspase-1/GSDMD-dependent pyroptosis and PI3K/AKT/mTOR-mediated autophagy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1