{"title":"A Comprehensive Review on Polymer-Dispersed Liquid Crystals: Mechanisms, Materials, and Applications.","authors":"Shikha Agarwal, Swastik Srivastava, Suraj Joshi, Shivangi Tripathi, Bhupendra Pratap Singh, Kamal Kumar Pandey, Rajiv Manohar","doi":"10.1021/acsmaterialsau.4c00122","DOIUrl":null,"url":null,"abstract":"<p><p>Polymer-dispersed liquid crystals (PDLCs) stand at the intersection of polymer science and liquid crystal technology, offering a unique blend of optical versatility and mechanical durability. These composite materials are composed of droplets of liquid crystals interspersed in a matrix of polymeric materials, harnessing the optical properties of liquid crystals while benefiting from the structural integrity of polymers. The responsiveness of LCs combined with the mechanical rigidity of polymers make polymer/LC composites-where the polymer network or matrix is used to stabilize and modify the LC phase-extremely important for scientists developing novel adaptive optical devices. PDLCs have garnered significant attention due to their ability to modulate light transmission properties, making them ideal candidates for applications ranging from smart windows and displays to light shutters and privacy filters. The incorporation of different ferroelectric, thermoelectric, magnetic, and ferromagnetic nanoparticles, quantum dots, nanorods, and a variety of dyes in the PDLC matrix has gained momentum over a span of few decades, as it lowers the otherwise-required high operating voltage and reduces the electro-optical response time of these devices. Due to better contrast in the transmittance of these materials in the field-off and on states, they find extensively wide application in a variety of photonic applications, viz., optical shutters and smart windows, photorefractives, modern displays, microlens arrays encompassing polymer-gravel lenses, and many other. Since the functional parameters of these devices embrace the thermophysical attributes of PDLC networks, it therefore becomes necessary to perform a detailed analysis of the properties of PDLCs and their ameliorations upon the addition of different dopants. This Review aims to review the recent advances in PDLCs and their enrichment in terms of their performance parameters upon the addition of a variety of dopants, as well as the improvement of different photonic applications owing to superior parametric implementation of these networks.</p>","PeriodicalId":29798,"journal":{"name":"ACS Materials Au","volume":"5 1","pages":"88-114"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718547/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsmaterialsau.4c00122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/8 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Polymer-dispersed liquid crystals (PDLCs) stand at the intersection of polymer science and liquid crystal technology, offering a unique blend of optical versatility and mechanical durability. These composite materials are composed of droplets of liquid crystals interspersed in a matrix of polymeric materials, harnessing the optical properties of liquid crystals while benefiting from the structural integrity of polymers. The responsiveness of LCs combined with the mechanical rigidity of polymers make polymer/LC composites-where the polymer network or matrix is used to stabilize and modify the LC phase-extremely important for scientists developing novel adaptive optical devices. PDLCs have garnered significant attention due to their ability to modulate light transmission properties, making them ideal candidates for applications ranging from smart windows and displays to light shutters and privacy filters. The incorporation of different ferroelectric, thermoelectric, magnetic, and ferromagnetic nanoparticles, quantum dots, nanorods, and a variety of dyes in the PDLC matrix has gained momentum over a span of few decades, as it lowers the otherwise-required high operating voltage and reduces the electro-optical response time of these devices. Due to better contrast in the transmittance of these materials in the field-off and on states, they find extensively wide application in a variety of photonic applications, viz., optical shutters and smart windows, photorefractives, modern displays, microlens arrays encompassing polymer-gravel lenses, and many other. Since the functional parameters of these devices embrace the thermophysical attributes of PDLC networks, it therefore becomes necessary to perform a detailed analysis of the properties of PDLCs and their ameliorations upon the addition of different dopants. This Review aims to review the recent advances in PDLCs and their enrichment in terms of their performance parameters upon the addition of a variety of dopants, as well as the improvement of different photonic applications owing to superior parametric implementation of these networks.
期刊介绍:
ACS Materials Au is an open access journal publishing letters articles reviews and perspectives describing high-quality research at the forefront of fundamental and applied research and at the interface between materials and other disciplines such as chemistry engineering and biology. Papers that showcase multidisciplinary and innovative materials research addressing global challenges are especially welcome. Areas of interest include but are not limited to:Design synthesis characterization and evaluation of forefront and emerging materialsUnderstanding structure property performance relationships and their underlying mechanismsDevelopment of materials for energy environmental biomedical electronic and catalytic applications