Is There an Optimal Spacer Cation for Two-Dimensional Lead Iodide Perovskites?

IF 5.7 Q2 CHEMISTRY, PHYSICAL ACS Materials Au Pub Date : 2024-11-26 eCollection Date: 2025-01-08 DOI:10.1021/acsmaterialsau.4c00101
Jiazhen Gu, Yongping Fu
{"title":"Is There an Optimal Spacer Cation for Two-Dimensional Lead Iodide Perovskites?","authors":"Jiazhen Gu, Yongping Fu","doi":"10.1021/acsmaterialsau.4c00101","DOIUrl":null,"url":null,"abstract":"<p><p>Two-dimensional lead iodide perovskites have attracted significant attention for their potential applications in optoelectronic and photonic devices due to their tunable excitonic properties. The choice of organic spacer cations significantly influences the light emission and exciton transport properties of these materials, which are vital for their device performance. In this Perspective, we discuss the impact of spacer cations on lattice dynamics and exciton-phonon coupling, focusing on three representative 2D lead iodide perovskites that exhibit distinct types of structural distortions. Minimizing structural distortions, such as dynamic out-of-plane octahedral tilting and lone pair distortion, appears to be essential for achieving narrow photoluminescence (PL) emission peaks, high PL quantum yields, and rapid exciton diffusion by suppressing exciton-phonon coupling, as demonstrated in 2D perovskites based on phenylethylammonium cation or its derivatives. We propose that designing spacer cations with enhanced intermolecular interactions and denser packing, combined with the close packing of inorganic ions to minimize the motions of both organic and inorganic lattices, would be the ideal scenario for yielding the most favorable optoelectronic properties in these materials.</p>","PeriodicalId":29798,"journal":{"name":"ACS Materials Au","volume":"5 1","pages":"24-34"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718535/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsmaterialsau.4c00101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/8 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional lead iodide perovskites have attracted significant attention for their potential applications in optoelectronic and photonic devices due to their tunable excitonic properties. The choice of organic spacer cations significantly influences the light emission and exciton transport properties of these materials, which are vital for their device performance. In this Perspective, we discuss the impact of spacer cations on lattice dynamics and exciton-phonon coupling, focusing on three representative 2D lead iodide perovskites that exhibit distinct types of structural distortions. Minimizing structural distortions, such as dynamic out-of-plane octahedral tilting and lone pair distortion, appears to be essential for achieving narrow photoluminescence (PL) emission peaks, high PL quantum yields, and rapid exciton diffusion by suppressing exciton-phonon coupling, as demonstrated in 2D perovskites based on phenylethylammonium cation or its derivatives. We propose that designing spacer cations with enhanced intermolecular interactions and denser packing, combined with the close packing of inorganic ions to minimize the motions of both organic and inorganic lattices, would be the ideal scenario for yielding the most favorable optoelectronic properties in these materials.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Materials Au
ACS Materials Au 材料科学-
CiteScore
5.00
自引率
0.00%
发文量
0
期刊介绍: ACS Materials Au is an open access journal publishing letters articles reviews and perspectives describing high-quality research at the forefront of fundamental and applied research and at the interface between materials and other disciplines such as chemistry engineering and biology. Papers that showcase multidisciplinary and innovative materials research addressing global challenges are especially welcome. Areas of interest include but are not limited to:Design synthesis characterization and evaluation of forefront and emerging materialsUnderstanding structure property performance relationships and their underlying mechanismsDevelopment of materials for energy environmental biomedical electronic and catalytic applications
期刊最新文献
Microneedles as a Promising Technology for Disease Monitoring and Drug Delivery: A Review. A Comprehensive Review on Polymer-Dispersed Liquid Crystals: Mechanisms, Materials, and Applications. Implications of Charge and Heteroatom Dopants on the Thermodynamics and Kinetics of Redox Reactions in Keggin-Type Polyoxometalates. Is There an Optimal Spacer Cation for Two-Dimensional Lead Iodide Perovskites? Interplay of Electronic Orders in Topological Quantum Materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1