Interplay of Electronic Orders in Topological Quantum Materials.

IF 5.7 Q2 CHEMISTRY, PHYSICAL ACS Materials Au Pub Date : 2024-11-25 eCollection Date: 2025-01-08 DOI:10.1021/acsmaterialsau.4c00114
Christian Stefan Gruber, Mahmoud Abdel-Hafiez
{"title":"Interplay of Electronic Orders in Topological Quantum Materials.","authors":"Christian Stefan Gruber, Mahmoud Abdel-Hafiez","doi":"10.1021/acsmaterialsau.4c00114","DOIUrl":null,"url":null,"abstract":"<p><p>Topological quantum materials hold great promise for future technological applications. Their unique electronic properties, such as protected surface states and exotic quasi-particles, offer opportunities for designing novel electronic and spintronics devices and allow quantum information processing. The origin of the interplay between various electronic orders in topological quantum materials, such as superconductivity and magnetism, remains unclear, particularly whether these electronic orders cooperate, compete, or simply coexist. Since the 2000s, the combination of topology and matter has sparked a tremendous surge of interest among theoreticians and experimentalists alike. Novel theoretical descriptions and predictions as well as complex experimental setups confirming or refuting these theories continuously appear in renowned journals. This review aims to provide conceptual tools to understand the fundamental concepts of this ever-growing field. Superconductivity and its historical development will serve as a second pillar alongside topological materials. While the main focus of this review is topological materials such as topological insulators and semimetals, topological superconductors will be explained phenomenologically.</p>","PeriodicalId":29798,"journal":{"name":"ACS Materials Au","volume":"5 1","pages":"72-87"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718540/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsmaterialsau.4c00114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/8 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Topological quantum materials hold great promise for future technological applications. Their unique electronic properties, such as protected surface states and exotic quasi-particles, offer opportunities for designing novel electronic and spintronics devices and allow quantum information processing. The origin of the interplay between various electronic orders in topological quantum materials, such as superconductivity and magnetism, remains unclear, particularly whether these electronic orders cooperate, compete, or simply coexist. Since the 2000s, the combination of topology and matter has sparked a tremendous surge of interest among theoreticians and experimentalists alike. Novel theoretical descriptions and predictions as well as complex experimental setups confirming or refuting these theories continuously appear in renowned journals. This review aims to provide conceptual tools to understand the fundamental concepts of this ever-growing field. Superconductivity and its historical development will serve as a second pillar alongside topological materials. While the main focus of this review is topological materials such as topological insulators and semimetals, topological superconductors will be explained phenomenologically.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Materials Au
ACS Materials Au 材料科学-
CiteScore
5.00
自引率
0.00%
发文量
0
期刊介绍: ACS Materials Au is an open access journal publishing letters articles reviews and perspectives describing high-quality research at the forefront of fundamental and applied research and at the interface between materials and other disciplines such as chemistry engineering and biology. Papers that showcase multidisciplinary and innovative materials research addressing global challenges are especially welcome. Areas of interest include but are not limited to:Design synthesis characterization and evaluation of forefront and emerging materialsUnderstanding structure property performance relationships and their underlying mechanismsDevelopment of materials for energy environmental biomedical electronic and catalytic applications
期刊最新文献
Microneedles as a Promising Technology for Disease Monitoring and Drug Delivery: A Review. A Comprehensive Review on Polymer-Dispersed Liquid Crystals: Mechanisms, Materials, and Applications. Implications of Charge and Heteroatom Dopants on the Thermodynamics and Kinetics of Redox Reactions in Keggin-Type Polyoxometalates. Is There an Optimal Spacer Cation for Two-Dimensional Lead Iodide Perovskites? Interplay of Electronic Orders in Topological Quantum Materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1