Donglei Wang, Peiyu Zhang, Qi-Zhi Zhong, Hanru Liu, Qun Yu, Ning Gao, Jingcheng Hao, Jiwei Cui
{"title":"Hydrogen Bonding-Driven Adaptive Coacervates as Protocells","authors":"Donglei Wang, Peiyu Zhang, Qi-Zhi Zhong, Hanru Liu, Qun Yu, Ning Gao, Jingcheng Hao, Jiwei Cui","doi":"10.1021/acsami.4c20214","DOIUrl":null,"url":null,"abstract":"Coacervation based on liquid–liquid phase separation (LLPS) has been widely used for the preparation of artificial protocells and to mimic the dynamic organization of membrane-free organelles. Most complex synthetic coacervates are formed through electrostatic interactions but cannot withstand high ionic strength conditions (>0.1 M). Alternative components and driving forces are highly desired for the formation of natural organelles to overcome the drawbacks of traditional coacervates. Herein, hydrogen bonding-driven adaptive coacervates are reported via the complexation of poly(ethylene glycol) (PEG) and tannic acid (TA). The LLPS behavior of these adaptive coacervates is dependent on the concentration and mass ratio of PEG and TA, which can be used to tune the size of coacervates ranging from 70 nm to 10 μm as well as the morphology of isotropic particles and hollow capsules. Coacervates are stable at high ionic concentrations up to 1 M and can serve as protocells to mimic cellular behaviors including metabolism (e.g., nutrient uptake), phagocytosis, and membrane fusion. The reported approach provides a platform for the rational design of hydrogen bonding-driven coacervates with controllable size and morphology, offering potential applications in protocell construction and therapeutic delivery.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"51 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c20214","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Coacervation based on liquid–liquid phase separation (LLPS) has been widely used for the preparation of artificial protocells and to mimic the dynamic organization of membrane-free organelles. Most complex synthetic coacervates are formed through electrostatic interactions but cannot withstand high ionic strength conditions (>0.1 M). Alternative components and driving forces are highly desired for the formation of natural organelles to overcome the drawbacks of traditional coacervates. Herein, hydrogen bonding-driven adaptive coacervates are reported via the complexation of poly(ethylene glycol) (PEG) and tannic acid (TA). The LLPS behavior of these adaptive coacervates is dependent on the concentration and mass ratio of PEG and TA, which can be used to tune the size of coacervates ranging from 70 nm to 10 μm as well as the morphology of isotropic particles and hollow capsules. Coacervates are stable at high ionic concentrations up to 1 M and can serve as protocells to mimic cellular behaviors including metabolism (e.g., nutrient uptake), phagocytosis, and membrane fusion. The reported approach provides a platform for the rational design of hydrogen bonding-driven coacervates with controllable size and morphology, offering potential applications in protocell construction and therapeutic delivery.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.