Mechanistic switch in corrosion behavior of magnesium alloy diamond lattice structures induced by argon plasma treatment

IF 15.8 1区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING Journal of Magnesium and Alloys Pub Date : 2025-01-14 DOI:10.1016/j.jma.2024.12.021
Viviana M. Posada, Alexandru Marin, Tonny Naranjo, Juan Ramírez, Patricia Fernández-Morales
{"title":"Mechanistic switch in corrosion behavior of magnesium alloy diamond lattice structures induced by argon plasma treatment","authors":"Viviana M. Posada, Alexandru Marin, Tonny Naranjo, Juan Ramírez, Patricia Fernández-Morales","doi":"10.1016/j.jma.2024.12.021","DOIUrl":null,"url":null,"abstract":"Advancing 3D magnesium (Mg) development beyond current limitations requires controlling Mg alloy degradation in pre-designed, low-dimension architectures. This study reveals a mechanistic switch in the corrosion behavior of Mg alloy (3.6% Al, 0.8 % Zn) diamond lattice structures, induced by plasma nanosynthesis (400 eV Ar<sup>+</sup> ions, fluence 1 × 10<sup>17</sup> ions/cm<sup>2</sup>). Plasma treatment of the Mg alloy increases surface Mg from 1.5% to 14.5%, enhances carbonate formation, and generates a nanostructured surface with a Mg carbonate layer over an oxide/hydroxide layer. In vitro and in vivo analyses over 8 wk demonstrate how this treatment fundamentally alters the degradation process and stability of these 3D architectures.While untreated samples initially formed a protective film that subsequently diminished, DPNS-treated samples demonstrated an inverse corrosion behavior. X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS) confirmed the presence of a stable, protective layer composed of magnesium oxide, magnesium hydroxide, and magnesium carbonate on the DPNS-treated surfaces. After 14 days, the DPNS-treated sample exhibited a more positive corrosion potential (-0.69 V versus -1.36 V) and a marginally lower current density (0.73 mA/cm² compared to 0.75 mA/cm²) relative to the control. This protective layer, combined with modified surface topology, initiated a core-to-periphery degradation pattern that maintained structural integrity for up to 8 wk post-implantation. These findings support the conclusion that the DPNS-treated scaffold demonstrates sustained improved corrosion resistance over time compared to the untreated control.Micro-CT revealed plasma-treated samples retained larger struts (504.9 ± 95.3 µm at 8 wk) and formed larger H<sub>2</sub> pockets extending 14.2 mm from the implant center, versus 4.9 mm in controls. This corrosion behavior switch enhances stability but risks pore clogging, offering insights for tailoring Mg alloy degradation and H<sub>2</sub> evolution in 3D architectures for biomedical applications.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"16 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jma.2024.12.021","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Advancing 3D magnesium (Mg) development beyond current limitations requires controlling Mg alloy degradation in pre-designed, low-dimension architectures. This study reveals a mechanistic switch in the corrosion behavior of Mg alloy (3.6% Al, 0.8 % Zn) diamond lattice structures, induced by plasma nanosynthesis (400 eV Ar+ ions, fluence 1 × 1017 ions/cm2). Plasma treatment of the Mg alloy increases surface Mg from 1.5% to 14.5%, enhances carbonate formation, and generates a nanostructured surface with a Mg carbonate layer over an oxide/hydroxide layer. In vitro and in vivo analyses over 8 wk demonstrate how this treatment fundamentally alters the degradation process and stability of these 3D architectures.While untreated samples initially formed a protective film that subsequently diminished, DPNS-treated samples demonstrated an inverse corrosion behavior. X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS) confirmed the presence of a stable, protective layer composed of magnesium oxide, magnesium hydroxide, and magnesium carbonate on the DPNS-treated surfaces. After 14 days, the DPNS-treated sample exhibited a more positive corrosion potential (-0.69 V versus -1.36 V) and a marginally lower current density (0.73 mA/cm² compared to 0.75 mA/cm²) relative to the control. This protective layer, combined with modified surface topology, initiated a core-to-periphery degradation pattern that maintained structural integrity for up to 8 wk post-implantation. These findings support the conclusion that the DPNS-treated scaffold demonstrates sustained improved corrosion resistance over time compared to the untreated control.Micro-CT revealed plasma-treated samples retained larger struts (504.9 ± 95.3 µm at 8 wk) and formed larger H2 pockets extending 14.2 mm from the implant center, versus 4.9 mm in controls. This corrosion behavior switch enhances stability but risks pore clogging, offering insights for tailoring Mg alloy degradation and H2 evolution in 3D architectures for biomedical applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氩等离子处理诱导镁合金金刚石晶格结构腐蚀行为的机理转换
推进3D镁(Mg)技术的发展,需要在预先设计的低维结构中控制镁合金的降解。本研究揭示了等离子体纳米合成(400 eV Ar+离子,影响1 × 1017离子/cm2)诱导的镁合金(3.6% Al, 0.8% Zn)金刚石晶格结构腐蚀行为的机制转换。等离子体处理将镁合金表面Mg含量从1.5%提高到14.5%,促进了碳酸盐的形成,并在氧化/氢氧化物层上形成了碳酸盐层的纳米结构表面。超过8周的体外和体内分析证明了这种处理如何从根本上改变这些3D结构的降解过程和稳定性。而未经处理的样品最初形成保护膜,随后减少,dpns处理的样品表现出相反的腐蚀行为。x射线光电子能谱(XPS)和电化学阻抗谱(EIS)证实,在dpns处理的表面上存在由氧化镁、氢氧化镁和碳酸镁组成的稳定保护层。14天后,dpns处理的样品显示出更高的正腐蚀电位(-0.69 V vs -1.36 V),电流密度(0.73 mA/cm²与0.75 mA/cm²相比)略低于对照。这种保护层与改良的表面拓扑结构相结合,启动了核心到外围的降解模式,在植入后8周内保持结构完整性。这些发现支持了这样的结论,即与未经处理的对照组相比,经过dpns处理的支架具有持续改善的耐腐蚀性。Micro-CT显示,经过等离子体处理的样品保留了更大的支撑(8周时为504.9±95.3µm),并形成了更大的H2袋,从植入物中心延伸14.2 mm,而对照组为4.9 mm。这种腐蚀行为开关提高了稳定性,但存在孔隙堵塞的风险,为生物医学应用的3D结构中定制镁合金降解和氢气演化提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Magnesium and Alloys
Journal of Magnesium and Alloys Engineering-Mechanics of Materials
CiteScore
20.20
自引率
14.80%
发文量
52
审稿时长
59 days
期刊介绍: The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.
期刊最新文献
An overview of RE-Mg-based alloys for hydrogen storage: Structure, properties, progresses and perspectives Direct bonding of AZ31B and ZrO2 induced by interfacial sono-oxidation reaction at a low temperature From macro-, through meso- to micro-scale: Densification behavior, deformation response and microstructural evolution of selective laser melted Mg-RE alloy Enhanced high-temperature strength of a Mg-4Sn-3Al-1 Zn alloy with good thermal stability via Mg2Sn precipitation Surface properties of friction stir welded dissimilar joints of AA7075 and Mg-WE43 alloys: Effect of positional arrangement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1