{"title":"Ferrocene Interlayer for a Stable and Gap-Free P3HT-Based Perovskite Solar Cell as a Low-Cost Power Source for Indoor IoTs","authors":"Chaowaphat Seriwattanachai, Somboon Sahasithiwat, Thana Chotchuangchutchaval, Ladda Srathongsian, Worawat Wattanathana, Zhijun Ning, Napan Phuphathanaphong, Patawee Sakata, Ko Ko Shin Thant, Thunrada Sukwiboon, Anuchytt Inna, Thanawat Kanlayapattamapong, Anusit Kaewprajak, Pisist Kumnorkaew, Ratchadaporn Supruangnet, Thipusa Wongpinij, Hideki Nakajima, Duangmanee Wongratanaphisan, Pasit Pakawatpanurut, Pipat Ruankham, Pongsakorn Kanjanaboos","doi":"10.1021/acsphotonics.4c01469","DOIUrl":null,"url":null,"abstract":"Although poly(3-hexylthiophene-2,5-diyl) (P3HT) with its stability-boosting hydrophobic surface is a promising low-cost alternative dopant-free hole transport material for n-i-p perovskite solar cells (PSCs), the P3HT-based PSCs suffer from surface energy mismatch between hydrophilic perovskite and hydrophobic P3HT, which results in interlayer gap, poor electronic contact, and poor charge extraction. In this study, low-cost ferrocene (Fc) acts as an interlayer at the perovskite/P3HT interface, inducing the replacement of the hydrophobic edge-on stacking of alkyl side chains with the hydrophilic π–π stacking of thiophene rings within the P3HT structure to mitigate such an energy mismatch. With an optimal amount of Fc, an average PCE of 23.6% has been achieved under indoor light at 1000 lux in comparison to 20.6% of P3HT-based PSCs without Fc. In addition, an unencapsulated device with the interlayer can retain 80% of initial PCE (T80) over 12 months in the dark with 70% RH, longer than T80 of 8 months without Fc. Finally, a Bluetooth sensor module is powered by three Fc-passivated P3HT-based PSCs connected in series to demonstrate the capacity of replacing batteries used for the Internet of Things (IoTs).","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"31 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c01469","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Although poly(3-hexylthiophene-2,5-diyl) (P3HT) with its stability-boosting hydrophobic surface is a promising low-cost alternative dopant-free hole transport material for n-i-p perovskite solar cells (PSCs), the P3HT-based PSCs suffer from surface energy mismatch between hydrophilic perovskite and hydrophobic P3HT, which results in interlayer gap, poor electronic contact, and poor charge extraction. In this study, low-cost ferrocene (Fc) acts as an interlayer at the perovskite/P3HT interface, inducing the replacement of the hydrophobic edge-on stacking of alkyl side chains with the hydrophilic π–π stacking of thiophene rings within the P3HT structure to mitigate such an energy mismatch. With an optimal amount of Fc, an average PCE of 23.6% has been achieved under indoor light at 1000 lux in comparison to 20.6% of P3HT-based PSCs without Fc. In addition, an unencapsulated device with the interlayer can retain 80% of initial PCE (T80) over 12 months in the dark with 70% RH, longer than T80 of 8 months without Fc. Finally, a Bluetooth sensor module is powered by three Fc-passivated P3HT-based PSCs connected in series to demonstrate the capacity of replacing batteries used for the Internet of Things (IoTs).
期刊介绍:
Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.