Exosomal miR-302b rejuvenates aging mice by reversing the proliferative arrest of senescent cells

IF 27.7 1区 生物学 Q1 CELL BIOLOGY Cell metabolism Pub Date : 2025-01-15 DOI:10.1016/j.cmet.2024.11.013
Youkun Bi, Xinlong Qiao, Zhaokui Cai, Hailian Zhao, Rong Ye, Qun Liu, Lin Gao, Yingqi Liu, Bo Liang, Yixuan Liu, Yaning Zhang, Zhiguang Yang, Yanyun Wu, Huiwen Wang, Wei Jia, Changqing Zeng, Ce Jia, Hongjin Wu, Yuanchao Xue, Guangju Ji
{"title":"Exosomal miR-302b rejuvenates aging mice by reversing the proliferative arrest of senescent cells","authors":"Youkun Bi, Xinlong Qiao, Zhaokui Cai, Hailian Zhao, Rong Ye, Qun Liu, Lin Gao, Yingqi Liu, Bo Liang, Yixuan Liu, Yaning Zhang, Zhiguang Yang, Yanyun Wu, Huiwen Wang, Wei Jia, Changqing Zeng, Ce Jia, Hongjin Wu, Yuanchao Xue, Guangju Ji","doi":"10.1016/j.cmet.2024.11.013","DOIUrl":null,"url":null,"abstract":"Cellular senescence, a hallmark of aging, involves a stable exit from the cell cycle. Senescent cells (SnCs) are closely associated with aging and aging-related disorders, making them potential targets for anti-aging interventions. In this study, we demonstrated that human embryonic stem cell-derived exosomes (hESC-Exos) reversed senescence by restoring the proliferative capacity of SnCs <em>in vitro</em>. In aging mice, hESC-Exos treatment remodeled the proliferative landscape of SnCs, leading to rejuvenation, as evidenced by extended lifespan, improved physical performance, and reduced aging markers. Ago2 Clip-seq analysis identified miR-302b enriched in hESC-Exos that specifically targeted the cell cycle inhibitors <em>Cdkn1a</em> and <em>Ccng2</em>. Furthermore, miR-302b treatment reversed the proliferative arrest of SnCs <em>in vivo</em>, resulting in rejuvenation without safety concerns over a 24-month observation period. These findings demonstrate that exosomal miR-302b has the potential to reverse cellular senescence, offering a promising approach to mitigate senescence-related pathologies and aging.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"36 1","pages":""},"PeriodicalIF":27.7000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell metabolism","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cmet.2024.11.013","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cellular senescence, a hallmark of aging, involves a stable exit from the cell cycle. Senescent cells (SnCs) are closely associated with aging and aging-related disorders, making them potential targets for anti-aging interventions. In this study, we demonstrated that human embryonic stem cell-derived exosomes (hESC-Exos) reversed senescence by restoring the proliferative capacity of SnCs in vitro. In aging mice, hESC-Exos treatment remodeled the proliferative landscape of SnCs, leading to rejuvenation, as evidenced by extended lifespan, improved physical performance, and reduced aging markers. Ago2 Clip-seq analysis identified miR-302b enriched in hESC-Exos that specifically targeted the cell cycle inhibitors Cdkn1a and Ccng2. Furthermore, miR-302b treatment reversed the proliferative arrest of SnCs in vivo, resulting in rejuvenation without safety concerns over a 24-month observation period. These findings demonstrate that exosomal miR-302b has the potential to reverse cellular senescence, offering a promising approach to mitigate senescence-related pathologies and aging.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell metabolism
Cell metabolism 生物-内分泌学与代谢
CiteScore
48.60
自引率
1.40%
发文量
173
审稿时长
2.5 months
期刊介绍: Cell Metabolism is a top research journal established in 2005 that focuses on publishing original and impactful papers in the field of metabolic research.It covers a wide range of topics including diabetes, obesity, cardiovascular biology, aging and stress responses, circadian biology, and many others. Cell Metabolism aims to contribute to the advancement of metabolic research by providing a platform for the publication and dissemination of high-quality research and thought-provoking articles.
期刊最新文献
Exosomal miR-302b rejuvenates aging mice by reversing the proliferative arrest of senescent cells Maternal circadian rhythms during pregnancy dictate metabolic plasticity in offspring Nuclear adenine activates hnRNPA2B1 to enhance antibacterial innate immunity Itaconate transporter SLC13A3 confers immunotherapy resistance via alkylation-mediated stabilization of PD-L1 Formation of I2+III2 supercomplex rescues respiratory chain defects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1