Sushruta Surappa, Suraj Pavagada, Fernando Soto, Demir Akin, Charles Wei, F. Levent Degertekin, Utkan Demirci
{"title":"Dynamically reconfigurable acoustofluidic metasurface for subwavelength particle manipulation and assembly","authors":"Sushruta Surappa, Suraj Pavagada, Fernando Soto, Demir Akin, Charles Wei, F. Levent Degertekin, Utkan Demirci","doi":"10.1038/s41467-024-55337-0","DOIUrl":null,"url":null,"abstract":"<p>Particle manipulation plays a pivotal role in scientific and technological domains such as materials science, physics, and the life sciences. Here, we present a dynamically reconfigurable acoustofluidic metasurface that enables precise trapping and positioning of microscale particles in fluidic environments. By harnessing acoustic-structure interaction in a passive membrane resonator array, we generate localized standing acoustic waves that can be reconfigured in real-time. The resulting radiation force allows for subwavelength manipulation and patterning of particles on the metasurface at individual and collective scales, with actuation frequencies below 2 MHz. We further demonstrate the capabilities of the reconfigurable metasurface in trapping and enriching beads and biological cells flowing in microfluidic channels, showcasing its potential in high-throughput bioanalytical applications. Our versatile and biocompatible particle manipulation platform is suitable for applications ranging from the assembly of colloidal particles to enrichment of rare cells.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"33 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55337-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Particle manipulation plays a pivotal role in scientific and technological domains such as materials science, physics, and the life sciences. Here, we present a dynamically reconfigurable acoustofluidic metasurface that enables precise trapping and positioning of microscale particles in fluidic environments. By harnessing acoustic-structure interaction in a passive membrane resonator array, we generate localized standing acoustic waves that can be reconfigured in real-time. The resulting radiation force allows for subwavelength manipulation and patterning of particles on the metasurface at individual and collective scales, with actuation frequencies below 2 MHz. We further demonstrate the capabilities of the reconfigurable metasurface in trapping and enriching beads and biological cells flowing in microfluidic channels, showcasing its potential in high-throughput bioanalytical applications. Our versatile and biocompatible particle manipulation platform is suitable for applications ranging from the assembly of colloidal particles to enrichment of rare cells.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.