Low-Dimensional Structure Modulation in Ag8SnSe6 for Enhanced Thermoelectric Performance

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2025-01-15 DOI:10.1002/adfm.202421449
Xueke Zhao, Mengyao Li, Mochen Jia, Christine Fiedler, Bingfei Nan, Dongwen Yang, Lei Li, Zicheng Yuan, Hongzhang Song, Yu Liu, Maria Ibáñez, Ziyu Wang, Chongxin Shan, Andreu Cabot
{"title":"Low-Dimensional Structure Modulation in Ag8SnSe6 for Enhanced Thermoelectric Performance","authors":"Xueke Zhao, Mengyao Li, Mochen Jia, Christine Fiedler, Bingfei Nan, Dongwen Yang, Lei Li, Zicheng Yuan, Hongzhang Song, Yu Liu, Maria Ibáñez, Ziyu Wang, Chongxin Shan, Andreu Cabot","doi":"10.1002/adfm.202421449","DOIUrl":null,"url":null,"abstract":"Ternary liquid-like thermoelectric materials have garnered significant attention due to their ultra-low lattice thermal conductivity. Among these, Ag<sub>8</sub>SnSe<sub>6</sub> stands out for its exceptionally low sound velocity and thermal conductivity. However, the inherent poor electrical conductivity and suboptimal thermoelectric properties of Ag<sub>8</sub>SnSe<sub>6</sub> necessitate further improvement. Here, a novel approach is initiated to enhance the thermoelectric properties of Ag<sub>8</sub>SnSe<sub>6</sub> by combining low-dimensionalization with intrinsic doping. For the first time, this work successfully synthesizes single-phase Ag<sub>8</sub>SnSe<sub>6</sub> nanocrystals, ≈10 nm in size, with the correct phase and composition using a robust and reliable colloidal method. This approach represents a significant improvement over previous reports on this material. Reducing the crystal domains of Ag<sub>8</sub>SnSe<sub>6</sub> to the nanoscale induces quantum confinement effects, increasing the density of states near the Fermi surface. It also introduces additional grain boundaries, which lower the lattice thermal conductivity and simplify structural design. Moreover, incorporating small amounts of Sn nanopowder into the Ag<sub>8</sub>SnSe<sub>6</sub> nanocrystals before consolidation further enhances the thermoelectric performance. Sn acts as a donor dopant, increasing the electronic concentration while at the same time improving their mobility by reducing interface barriers, thus significantly improving the material transport properties. Additionally, the presence of Sn leads to the formation of point defects, dislocations, and secondary phases, which increase phonon scattering and further reduce the thermal conductivity. Through this synergistic optimization, the figure of merit shows a significant increase across a wide temperature range. Overall, a strategy is presented for the controlled preparation of Ag<sub>8</sub>SnSe<sub>6</sub> nanocrystals, the decoupling of their electrical and thermal transport, and the practical application of this material to thermoelectric single-leg modules.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"31 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202421449","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ternary liquid-like thermoelectric materials have garnered significant attention due to their ultra-low lattice thermal conductivity. Among these, Ag8SnSe6 stands out for its exceptionally low sound velocity and thermal conductivity. However, the inherent poor electrical conductivity and suboptimal thermoelectric properties of Ag8SnSe6 necessitate further improvement. Here, a novel approach is initiated to enhance the thermoelectric properties of Ag8SnSe6 by combining low-dimensionalization with intrinsic doping. For the first time, this work successfully synthesizes single-phase Ag8SnSe6 nanocrystals, ≈10 nm in size, with the correct phase and composition using a robust and reliable colloidal method. This approach represents a significant improvement over previous reports on this material. Reducing the crystal domains of Ag8SnSe6 to the nanoscale induces quantum confinement effects, increasing the density of states near the Fermi surface. It also introduces additional grain boundaries, which lower the lattice thermal conductivity and simplify structural design. Moreover, incorporating small amounts of Sn nanopowder into the Ag8SnSe6 nanocrystals before consolidation further enhances the thermoelectric performance. Sn acts as a donor dopant, increasing the electronic concentration while at the same time improving their mobility by reducing interface barriers, thus significantly improving the material transport properties. Additionally, the presence of Sn leads to the formation of point defects, dislocations, and secondary phases, which increase phonon scattering and further reduce the thermal conductivity. Through this synergistic optimization, the figure of merit shows a significant increase across a wide temperature range. Overall, a strategy is presented for the controlled preparation of Ag8SnSe6 nanocrystals, the decoupling of their electrical and thermal transport, and the practical application of this material to thermoelectric single-leg modules.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Liquid Water Molecular Connected Quantum Dots for Self-Driven Photodetector Heterogeneous Doping via Methyl-Encapsulated Fumed Silica Enabling Weak Solvated and Self-Purified Electrolyte in Long-Term High-Voltage Lithium Batteries Hierarchical Composite Polyimide Aerogels with Hyperbranched Siloxane for High Electromagnetic Wave Absorption Phosphorus-Mediated Selenium Dual Atoms for Bifunctional Oxygen Reactions and Long-Life Low-Temperature Energy Conversion Electrically Detachable and Fully Recyclable Pressure Sensitive Ionoadhesive Tapes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1