Persephone Ma, Zhe Du, Qian Zhang, Michael Sadowsky, Carl Rosen
{"title":"Effects of sewage sludge ash as a recycled phosphorus source on the soil microbiome.","authors":"Persephone Ma, Zhe Du, Qian Zhang, Michael Sadowsky, Carl Rosen","doi":"10.1016/j.copbio.2024.103254","DOIUrl":null,"url":null,"abstract":"<p><p>Ash byproducts have been used as soil amendments to recycle nutrients and modify soil properties such as pH or density. Interest in these practices has continued with increasing emphasis on sustainability, particularly regarding phosphorus reuse from incinerated sewage sludge. Given recent advancements in microbial analyses, the impacts of these practices can now be studied from the soil microbiome perspective. Next-generation DNA sequencing technologies provide information about the taxonomic composition of bacterial, archaeal, and fungal communities in a complex environment like soil. In this review, we discuss the results of microbial analyses of soils amended with recycled ash products, including a pilot study of sewage sludge incinerator ash as a phosphorus source. These results indicated that changes in soil microbial community composition require high amounts of amendment for detectible effects. Future research efforts could include more focused investigations into phosphorus-related microorganisms, such as phosphorus-solubilizing bacteria or polyphosphate-accumulating organisms.</p>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":"92 ","pages":"103254"},"PeriodicalIF":7.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.copbio.2024.103254","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Ash byproducts have been used as soil amendments to recycle nutrients and modify soil properties such as pH or density. Interest in these practices has continued with increasing emphasis on sustainability, particularly regarding phosphorus reuse from incinerated sewage sludge. Given recent advancements in microbial analyses, the impacts of these practices can now be studied from the soil microbiome perspective. Next-generation DNA sequencing technologies provide information about the taxonomic composition of bacterial, archaeal, and fungal communities in a complex environment like soil. In this review, we discuss the results of microbial analyses of soils amended with recycled ash products, including a pilot study of sewage sludge incinerator ash as a phosphorus source. These results indicated that changes in soil microbial community composition require high amounts of amendment for detectible effects. Future research efforts could include more focused investigations into phosphorus-related microorganisms, such as phosphorus-solubilizing bacteria or polyphosphate-accumulating organisms.
期刊介绍:
Current Opinion in Biotechnology (COBIOT) is renowned for publishing authoritative, comprehensive, and systematic reviews. By offering clear and readable syntheses of current advances in biotechnology, COBIOT assists specialists in staying updated on the latest developments in the field. Expert authors annotate the most noteworthy papers from the vast array of information available today, providing readers with valuable insights and saving them time.
As part of the Current Opinion and Research (CO+RE) suite of journals, COBIOT is accompanied by the open-access primary research journal, Current Research in Biotechnology (CRBIOT). Leveraging the editorial excellence, high impact, and global reach of the Current Opinion legacy, CO+RE journals ensure they are widely read resources integral to scientists' workflows.
COBIOT is organized into themed sections, each reviewed once a year. These themes cover various areas of biotechnology, including analytical biotechnology, plant biotechnology, food biotechnology, energy biotechnology, environmental biotechnology, systems biology, nanobiotechnology, tissue, cell, and pathway engineering, chemical biotechnology, and pharmaceutical biotechnology.