Shreyal Maikoo, Robert-Jan Palstra, Krista L Dong, Tokameh Mahmoudi, Thumbi Ndung'u, Paradise Madlala
{"title":"Development of a latency model for HIV-1 subtype C and the impact of long terminal repeat element genetic variation on latency reversal.","authors":"Shreyal Maikoo, Robert-Jan Palstra, Krista L Dong, Tokameh Mahmoudi, Thumbi Ndung'u, Paradise Madlala","doi":"10.1016/j.jve.2024.100575","DOIUrl":null,"url":null,"abstract":"<p><p>Sub-Saharan Africa accounts for almost 70 % of people living with HIV (PLWH) worldwide, with the greatest numbers centred in South Africa where 98 % of infections are caused by subtype C (HIV-1C). However, HIV-1 subtype B (HIV-1B), prevalent in Europe and North America, has been the focus of most cure research and testing despite making up only 12 % of HIV-1 infections globally. Development of latency models for non-subtype B viruses is a necessary step to address this disproportionate focus. Furthermore, the impact of genetic variation between viral subtypes, specifically within the long terminal repeat (LTR) element of the viral transcriptional promoter on latency reversal, remains unclear. To address this scientific gap, we constructed a minimal genome retroviral vector expressing HIV-1C consensus transactivator of transcription protein (Tat) and green fluorescent protein (GFP) under the control of either HIV-1C consensus LTR (C731CC) or the transmitted/founder (T/F) LTRs derived from PLWH (C<sub>T/F</sub>731CC), produced corresponding LTR pseudotyped viruses using a vesicular stomatitis virus (VSV-G) pseudotyped Envelope vector and the pCMVΔR8.91 packaging vector containing HIV-1 accessory and <i>rev</i> genes. Viruses produced in this way were used to infect Jurkat E6 and primary CD4<sup>+</sup> T cells <i>in vitro</i>. By enriching for latently infected cells, and treating them with different latency reversing agents, we developed an HIV-1C latency model that demonstrated that the HIV-1C consensus LTR has lower reactivation potential compared to its HIV-1B counterpart. Furthermore, HIV-1C T/F LTR pseudotyped proviral genetic variants exhibited a heterogenous reactivation response which was modulated by host cell (genetic) variation. Our data suggests that genetic variation both within and between HIV-1 subtypes influences latency reversal. Future studies should investigate the specific role of variation in host cellular environment on reactivation differences.</p>","PeriodicalId":17552,"journal":{"name":"Journal of Virus Eradication","volume":"10 4","pages":"100575"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730875/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Virus Eradication","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jve.2024.100575","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sub-Saharan Africa accounts for almost 70 % of people living with HIV (PLWH) worldwide, with the greatest numbers centred in South Africa where 98 % of infections are caused by subtype C (HIV-1C). However, HIV-1 subtype B (HIV-1B), prevalent in Europe and North America, has been the focus of most cure research and testing despite making up only 12 % of HIV-1 infections globally. Development of latency models for non-subtype B viruses is a necessary step to address this disproportionate focus. Furthermore, the impact of genetic variation between viral subtypes, specifically within the long terminal repeat (LTR) element of the viral transcriptional promoter on latency reversal, remains unclear. To address this scientific gap, we constructed a minimal genome retroviral vector expressing HIV-1C consensus transactivator of transcription protein (Tat) and green fluorescent protein (GFP) under the control of either HIV-1C consensus LTR (C731CC) or the transmitted/founder (T/F) LTRs derived from PLWH (CT/F731CC), produced corresponding LTR pseudotyped viruses using a vesicular stomatitis virus (VSV-G) pseudotyped Envelope vector and the pCMVΔR8.91 packaging vector containing HIV-1 accessory and rev genes. Viruses produced in this way were used to infect Jurkat E6 and primary CD4+ T cells in vitro. By enriching for latently infected cells, and treating them with different latency reversing agents, we developed an HIV-1C latency model that demonstrated that the HIV-1C consensus LTR has lower reactivation potential compared to its HIV-1B counterpart. Furthermore, HIV-1C T/F LTR pseudotyped proviral genetic variants exhibited a heterogenous reactivation response which was modulated by host cell (genetic) variation. Our data suggests that genetic variation both within and between HIV-1 subtypes influences latency reversal. Future studies should investigate the specific role of variation in host cellular environment on reactivation differences.
期刊介绍:
The Journal of Virus Eradication aims to provide a specialist, open-access forum to publish work in the rapidly developing field of virus eradication. The Journal covers all human viruses, in the context of new therapeutic strategies, as well as societal eradication of viral infections with preventive interventions.
The Journal is aimed at the international community involved in the prevention and management of viral infections. It provides an academic forum for the publication of original research into viral reservoirs, viral persistence and virus eradication and ultimately development of cures.
The Journal not only publishes original research, but provides an opportunity for opinions, reviews, case studies and comments on the published literature. It focusses on evidence-based medicine as the major thrust in the successful management of viral infections.The Journal encompasses virological, immunological, epidemiological, modelling, pharmacological, pre-clinical and in vitro, as well as clinical, data including but not limited to drugs, immunotherapy and gene therapy. It is an important source of information on the development of vaccine programs and preventative measures aimed at virus eradication.