Inhibitory and Curative Effects and Mode of Action of Hydroxychloroquine on Botrytis cinerea of Tomato.

IF 2.6 2区 农林科学 Q2 PLANT SCIENCES Phytopathology Pub Date : 2025-01-15 DOI:10.1094/PHYTO-12-24-0397-R
Chengyan Xia, Xiansu Wang, Zeqi Qi, Fenghua Liu, Dongxue Li, Xiaolin Zhang, Libo Zhang, Delu Wang, Zhuo Chen
{"title":"Inhibitory and Curative Effects and Mode of Action of Hydroxychloroquine on <i>Botrytis cinerea</i> of Tomato.","authors":"Chengyan Xia, Xiansu Wang, Zeqi Qi, Fenghua Liu, Dongxue Li, Xiaolin Zhang, Libo Zhang, Delu Wang, Zhuo Chen","doi":"10.1094/PHYTO-12-24-0397-R","DOIUrl":null,"url":null,"abstract":"<p><p>Gray mold is an important disease of crops and is widespread, harmful, difficult to control, and prone to developing fungicide resistance. Screening new fungicides is an important step in controlling this disease. Hydroxychloroquine is an anti-inflammatory and anti-malarial agent, which has shown marked inhibitory activity against many fungi in medicine. This study evaluated the inhibitory activity of hydroxychloroquine against several phytopathogenic fungi, finding a half-maximal effective concentration of 113.82 μg/ml against the hyphal growth of <i>Botrytis cinerea</i>, with significant in-vivo curative effects of 92.37% or 78.37% for gray mold on detached tomato leaves or fruits at 10.0 or 200.0 mg/ml, respectively. Ultrastructural studies indicated that hydroxychloroquine induced collapse of hyphae, with a wrinkled surface, unclear organelle boundaries, and organelle disintegration. Transcriptomic assays revealed that hydroxychloroquine could affect the expression of metabolism-related genes. Molecular docking and molecular dynamics analyses indicated that hydroxychloroquine bound to glucose-methanol-choline oxidoreductase, with low free energy value of -11.4 kcal/mol. Cell membrane permeability assays and hyphal staining confirmed that hydroxychloroquine damaged the cell membrane, causing leakage of hyphal contents and disturbing cell function. Biochemical assays indicated that hydroxychloroquine reduced the concentration of soluble proteins and reducing sugars in the hyphae. In total, hydroxychloroquine disturbed amino acid metabolism, therefore inhibiting the production of biomacromolecules, damaging the cell membrane, and restraining the growth of hyphae, and hence inhibiting gray mold on tomato. This study will explore the use of medicine in the development of agricultural fungicides and their application in managing crop diseases, providing valuable background information.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytopathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1094/PHYTO-12-24-0397-R","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Gray mold is an important disease of crops and is widespread, harmful, difficult to control, and prone to developing fungicide resistance. Screening new fungicides is an important step in controlling this disease. Hydroxychloroquine is an anti-inflammatory and anti-malarial agent, which has shown marked inhibitory activity against many fungi in medicine. This study evaluated the inhibitory activity of hydroxychloroquine against several phytopathogenic fungi, finding a half-maximal effective concentration of 113.82 μg/ml against the hyphal growth of Botrytis cinerea, with significant in-vivo curative effects of 92.37% or 78.37% for gray mold on detached tomato leaves or fruits at 10.0 or 200.0 mg/ml, respectively. Ultrastructural studies indicated that hydroxychloroquine induced collapse of hyphae, with a wrinkled surface, unclear organelle boundaries, and organelle disintegration. Transcriptomic assays revealed that hydroxychloroquine could affect the expression of metabolism-related genes. Molecular docking and molecular dynamics analyses indicated that hydroxychloroquine bound to glucose-methanol-choline oxidoreductase, with low free energy value of -11.4 kcal/mol. Cell membrane permeability assays and hyphal staining confirmed that hydroxychloroquine damaged the cell membrane, causing leakage of hyphal contents and disturbing cell function. Biochemical assays indicated that hydroxychloroquine reduced the concentration of soluble proteins and reducing sugars in the hyphae. In total, hydroxychloroquine disturbed amino acid metabolism, therefore inhibiting the production of biomacromolecules, damaging the cell membrane, and restraining the growth of hyphae, and hence inhibiting gray mold on tomato. This study will explore the use of medicine in the development of agricultural fungicides and their application in managing crop diseases, providing valuable background information.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
羟氯喹对番茄灰霉病的抑制、疗效及作用机理研究。
灰霉病是农作物的一种重要病害,分布广、危害大、难以控制,而且容易产生杀菌剂抗药性。筛选新的杀菌剂是控制这种病害的重要一步。羟氯喹是一种消炎药和抗疟疾药,在医学上对多种真菌有明显的抑制作用。本研究评估了羟氯喹对几种植物病原真菌的抑制活性,发现羟氯喹对灰霉病菌的半数最大有效浓度为 113.82 μg/ml,对番茄离体叶片或果实上的灰霉病菌的体内治疗效果显著,10.0 或 200.0 mg/ml 的浓度分别为 92.37% 或 78.37%。超微结构研究表明,羟氯喹会导致菌丝崩溃,表面起皱,细胞器界限不清,细胞器解体。转录组测定显示,羟氯喹可影响代谢相关基因的表达。分子对接和分子动力学分析表明,羟氯喹与葡萄糖-甲醇-胆碱氧化还原酶结合,其自由能值较低,为-11.4 kcal/mol。细胞膜渗透性试验和菌丝染色证实,羟氯喹破坏了细胞膜,导致菌丝内容物渗漏,干扰了细胞功能。生化试验表明,羟氯喹降低了菌丝中可溶性蛋白质和还原糖的浓度。总之,羟氯喹干扰了氨基酸代谢,从而抑制了生物大分子的产生,破坏了细胞膜,抑制了菌丝的生长,从而抑制了番茄灰霉病的发生。本研究将探索药物在农用杀菌剂开发及其在作物病害防治中的应用,提供有价值的背景信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Phytopathology
Phytopathology 生物-植物科学
CiteScore
5.90
自引率
9.40%
发文量
505
审稿时长
4-8 weeks
期刊介绍: Phytopathology publishes articles on fundamental research that advances understanding of the nature of plant diseases, the agents that cause them, their spread, the losses they cause, and measures that can be used to control them. Phytopathology considers manuscripts covering all aspects of plant diseases including bacteriology, host-parasite biochemistry and cell biology, biological control, disease control and pest management, description of new pathogen species description of new pathogen species, ecology and population biology, epidemiology, disease etiology, host genetics and resistance, mycology, nematology, plant stress and abiotic disorders, postharvest pathology and mycotoxins, and virology. Papers dealing mainly with taxonomy, such as descriptions of new plant pathogen taxa are acceptable if they include plant disease research results such as pathogenicity, host range, etc. Taxonomic papers that focus on classification, identification, and nomenclature below the subspecies level may also be submitted to Phytopathology.
期刊最新文献
Prevalence of Mutations Associated with QoI, QiI, QioSI and CAA Fungicide Resistance Within Plasmopara viticola in North America and a Tool to Detect CAA Resistant Isolates. Pyriofenone Interacts with the Major Facilitator Superfamily Transporter of Phytopathogenic Fungi to Potentially Control Tea Leaf Spot Caused by Lasiodiplodia theobromae. Loop-Mediated Isothermal Amplification Detection of Phytophthora kernoviae, P. ramorum, and the P. ramorum NA1 Lineage on a Microfluidic Chip and Smartphone Platform. Origins and Distribution of Panicum Mosaic Virus and Sugarcane Mosaic Virus on Stenotaphrum secundatum in Australia. Inhibitory and Curative Effects and Mode of Action of Hydroxychloroquine on Botrytis cinerea of Tomato.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1