J. Greenfield, C. Bell, F. Faramarzi, C. Kim, R. Basu Thakur, A. Wandui, C. Frez, P. Mauskopf, D. Cunnane
{"title":"Kinetic inductance and non-linearity of MgB2 films at 4K","authors":"J. Greenfield, C. Bell, F. Faramarzi, C. Kim, R. Basu Thakur, A. Wandui, C. Frez, P. Mauskopf, D. Cunnane","doi":"10.1063/5.0245866","DOIUrl":null,"url":null,"abstract":"We report on the fabrication and characterization of superconducting magnesium diboride (MgB2) thin films intended for quantum-limited devices based on non-linear kinetic inductance (NLKI) such as parametric amplifiers with either elevated operating temperatures or expanded frequency ranges. In order to characterize the MgB2 material properties, we have fabricated coplanar waveguide (CPW) transmission lines and microwave resonators using ≈40 nm thick MgB2 films with a measured kinetic inductance of ∼5.5 pH/□ and internal quality factors Qi≈3×104 at 4.2 K. We measure the NLKI in MgB2 by applying a DC bias to a 6 cm long by 4 μm wide CPW transmission line and measuring the resulting phase delay caused by the current dependent NLKI. We also measure the current dependent NLKI through CPW resonators that shift down in frequency with increased power applied through the CPW feedline. Using these measurements, we calculate the characteristic non-linear current parameter, I*, for multiple CPW geometries. We find values for corresponding current density, J*=12–22 MA/cm2, and a ratio of the critical current to the non-linear current parameter, IC/I*=0.14–0.26, similar to or higher than values for other superconductors such as NbTiN and TiN.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"27 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0245866","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We report on the fabrication and characterization of superconducting magnesium diboride (MgB2) thin films intended for quantum-limited devices based on non-linear kinetic inductance (NLKI) such as parametric amplifiers with either elevated operating temperatures or expanded frequency ranges. In order to characterize the MgB2 material properties, we have fabricated coplanar waveguide (CPW) transmission lines and microwave resonators using ≈40 nm thick MgB2 films with a measured kinetic inductance of ∼5.5 pH/□ and internal quality factors Qi≈3×104 at 4.2 K. We measure the NLKI in MgB2 by applying a DC bias to a 6 cm long by 4 μm wide CPW transmission line and measuring the resulting phase delay caused by the current dependent NLKI. We also measure the current dependent NLKI through CPW resonators that shift down in frequency with increased power applied through the CPW feedline. Using these measurements, we calculate the characteristic non-linear current parameter, I*, for multiple CPW geometries. We find values for corresponding current density, J*=12–22 MA/cm2, and a ratio of the critical current to the non-linear current parameter, IC/I*=0.14–0.26, similar to or higher than values for other superconductors such as NbTiN and TiN.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.