Le Gao, Ying Wei, Tao Wang, Qian Zhu, Yu Liu, Ziheng Zhang, Zunrui Hu, Bo Zhou, Haijiao Zhang, Na Jin, Donglei Jiao, Meizhen Yin, Jie Shen, Shuo Yan
{"title":"Preparation of a Self-Assembled Nanoantiviral Pesticide with Strong Adhesion Performance for Efficiency Control of Destructive Soybean Mosaic Virus","authors":"Le Gao, Ying Wei, Tao Wang, Qian Zhu, Yu Liu, Ziheng Zhang, Zunrui Hu, Bo Zhou, Haijiao Zhang, Na Jin, Donglei Jiao, Meizhen Yin, Jie Shen, Shuo Yan","doi":"10.1021/acs.jafc.4c11405","DOIUrl":null,"url":null,"abstract":"In this context, we reported for the first time the design and development of a self-assembled nanoantiviral pesticide based on the star polycation (SPc) and the broad-spectrum fungicide/antiviral agent seboctylamine for field control of <i>Soybean mosaic virus</i> (SMV), a highly destructive plant virus in soybean crops. The SPc could self-assemble with seboctylamine through hydrogen bonds and van der Waals forces, and the complexation with SPc reduced the particle size of seboctylamine to form a spherical seboctylamine/SPc complex. In addition, the contact angle of seboctylamine decreased, and its retention increased with the aid of SPc, indicating excellent wetting properties and strong leaf surface adhesion performance. The incorporation of SPc significantly inhibited viral accumulation in soybean plants and enhanced the field control efficacy of seboctylamine against SMV, resulting in improved agronomic traits. Overall, our study would contribute to facilitating a new strategy for the effective control of SMV in soybeans.","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"522 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c11405","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this context, we reported for the first time the design and development of a self-assembled nanoantiviral pesticide based on the star polycation (SPc) and the broad-spectrum fungicide/antiviral agent seboctylamine for field control of Soybean mosaic virus (SMV), a highly destructive plant virus in soybean crops. The SPc could self-assemble with seboctylamine through hydrogen bonds and van der Waals forces, and the complexation with SPc reduced the particle size of seboctylamine to form a spherical seboctylamine/SPc complex. In addition, the contact angle of seboctylamine decreased, and its retention increased with the aid of SPc, indicating excellent wetting properties and strong leaf surface adhesion performance. The incorporation of SPc significantly inhibited viral accumulation in soybean plants and enhanced the field control efficacy of seboctylamine against SMV, resulting in improved agronomic traits. Overall, our study would contribute to facilitating a new strategy for the effective control of SMV in soybeans.
期刊介绍:
The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.