Highly Efficient and Universal Degradation of PD-L1 via Mitochondrial Oxidative Stress Evoked by Cationic AIE-Active Photosensitizers for Cancer Immunotherapy
Jiazhe Liu, Ruoyao Zhang, Yixuan Bao, Yijun Chen, Wenfang Zheng, Jianing Yuan, Zhuomiao Zhang, Pu Chen, Meiju Ji, Yangyang Cheng, Peng Hou, Dongfeng Dang, Dan Ding, Chao Chen
{"title":"Highly Efficient and Universal Degradation of PD-L1 via Mitochondrial Oxidative Stress Evoked by Cationic AIE-Active Photosensitizers for Cancer Immunotherapy","authors":"Jiazhe Liu, Ruoyao Zhang, Yixuan Bao, Yijun Chen, Wenfang Zheng, Jianing Yuan, Zhuomiao Zhang, Pu Chen, Meiju Ji, Yangyang Cheng, Peng Hou, Dongfeng Dang, Dan Ding, Chao Chen","doi":"10.1002/adfm.202414495","DOIUrl":null,"url":null,"abstract":"The blockade of interactions between programmed death-ligand 1 (PD-L1) on cancer cell surfaces and programmed cell death-1 (PD-1) receptors on T cells is a crucial strategy in cancer immunotherapy. However, the continuous replenishment of PD-L1 from intracellular stores presents a significant challenge that undermines therapeutic efficacy. Therefore, effective downregulation of intracellular PD-L1 is essential for improving treatment outcomes. In this study, a novel approach that utilizes mitochondrial oxidative stress to achieve highly efficient and universal PD-L1 degradation is presented. A cationic aggregation-induced emission-active photosensitizer, DPA-B-YP<sup>+</sup>, which generates reactive oxygen species (ROS) upon light activation to induce mitochondrial oxidative stress on demand is developed. Compared to traditional high-performance PD-L1 degraders such as metformin and berberine, ROS-induced mitochondrial stress by DPA-B-YP<sup>+</sup> demonstrates superior efficiency and broader applicability in PD-L1 degradation across various tumor types. Mechanistic studies reveal that PD-L1 degradation by DPA-B-YP<sup>+</sup> occurs via the AMPK-ubiquitination pathway. Furthermore, in a murine immunogenic “cold” tumor model, DPA-B-YP<sup>+</sup> effectively degrades PD-L1 and significantly enhances CD8<sup>+</sup> T cell-mediated immune responses upon light activation, without the need for additional drugs or immune adjuvants. These findings present a novel approach and material for PD-L1 degradation, contributing to advancements in cancer immunotherapy.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"29 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202414495","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The blockade of interactions between programmed death-ligand 1 (PD-L1) on cancer cell surfaces and programmed cell death-1 (PD-1) receptors on T cells is a crucial strategy in cancer immunotherapy. However, the continuous replenishment of PD-L1 from intracellular stores presents a significant challenge that undermines therapeutic efficacy. Therefore, effective downregulation of intracellular PD-L1 is essential for improving treatment outcomes. In this study, a novel approach that utilizes mitochondrial oxidative stress to achieve highly efficient and universal PD-L1 degradation is presented. A cationic aggregation-induced emission-active photosensitizer, DPA-B-YP+, which generates reactive oxygen species (ROS) upon light activation to induce mitochondrial oxidative stress on demand is developed. Compared to traditional high-performance PD-L1 degraders such as metformin and berberine, ROS-induced mitochondrial stress by DPA-B-YP+ demonstrates superior efficiency and broader applicability in PD-L1 degradation across various tumor types. Mechanistic studies reveal that PD-L1 degradation by DPA-B-YP+ occurs via the AMPK-ubiquitination pathway. Furthermore, in a murine immunogenic “cold” tumor model, DPA-B-YP+ effectively degrades PD-L1 and significantly enhances CD8+ T cell-mediated immune responses upon light activation, without the need for additional drugs or immune adjuvants. These findings present a novel approach and material for PD-L1 degradation, contributing to advancements in cancer immunotherapy.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.