{"title":"A quantitative analysis of knowledge-learning preferences in large language models in molecular science","authors":"Pengfei Liu, Jun Tao, Zhixiang Ren","doi":"10.1038/s42256-024-00977-6","DOIUrl":null,"url":null,"abstract":"<p>Deep learning has significantly advanced molecular modelling and design, enabling an efficient understanding and discovery of novel molecules. In particular, large language models introduce a fresh research paradigm to tackle scientific problems from a natural language processing perspective. Large language models significantly enhance our understanding and generation of molecules, often surpassing existing methods with their capabilities to decode and synthesize complex molecular patterns. However, two key issues remain: how to quantify the match between model and data modalities and how to identify the knowledge-learning preferences of models. To address these challenges, we propose a multimodal benchmark, named ChEBI-20-MM, and perform 1,263 experiments to assess the model’s compatibility with data modalities and knowledge acquisition. Through the modal transition probability matrix, we provide insights into the most suitable modalities for tasks. Furthermore, we introduce a statistically interpretable approach to discover context-specific knowledge mapping by localized feature filtering. Our analysis offers an exploration of the learning mechanism and paves the way for advancing large language models in molecular science.</p>","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"68 1","pages":""},"PeriodicalIF":18.8000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1038/s42256-024-00977-6","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning has significantly advanced molecular modelling and design, enabling an efficient understanding and discovery of novel molecules. In particular, large language models introduce a fresh research paradigm to tackle scientific problems from a natural language processing perspective. Large language models significantly enhance our understanding and generation of molecules, often surpassing existing methods with their capabilities to decode and synthesize complex molecular patterns. However, two key issues remain: how to quantify the match between model and data modalities and how to identify the knowledge-learning preferences of models. To address these challenges, we propose a multimodal benchmark, named ChEBI-20-MM, and perform 1,263 experiments to assess the model’s compatibility with data modalities and knowledge acquisition. Through the modal transition probability matrix, we provide insights into the most suitable modalities for tasks. Furthermore, we introduce a statistically interpretable approach to discover context-specific knowledge mapping by localized feature filtering. Our analysis offers an exploration of the learning mechanism and paves the way for advancing large language models in molecular science.
期刊介绍:
Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements.
To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects.
Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.