Biomimetic Fibrous Bone Substitute Manufacture Through Non-Solvent-Assisted 3D Printing

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2025-01-17 DOI:10.1002/adfm.202419464
Kunxi Zhang, Haowei Fang, Xiangyang Cheng, Jinyan Li, Jiujiang Zeng, Tao Zhang, Haiyan Cui, Huijie Gu, Jingbo Yin
{"title":"Biomimetic Fibrous Bone Substitute Manufacture Through Non-Solvent-Assisted 3D Printing","authors":"Kunxi Zhang, Haowei Fang, Xiangyang Cheng, Jinyan Li, Jiujiang Zeng, Tao Zhang, Haiyan Cui, Huijie Gu, Jingbo Yin","doi":"10.1002/adfm.202419464","DOIUrl":null,"url":null,"abstract":"The manufacturing of biomimetic bone characterized by an organic–inorganic combination and fibrous structure has garnered significant attention. Inspired by the formation of multi-layered fibrous structures in bone tissue, this study is based on the fibril assembled from poly(γ-benzyl-L-glutamate) (PBLG) in helicogenic solvent, proposing a non-solvent-assisted 3D printing method for realizing the PBLG 3D printing while generating biomimetic fiber structures in One-Step to mimic the formation of collagen fiber bundles. The unprintable mixture of PBLG and hydroxyapatite nanoparticles (nHA) in 1,4-dioxane exhibits extrudability, self-supporting properties, and plasticity in ethanol. Meanwhile, ethanol-assisted printing leads to the spontaneous growth of PBLG-fibrils into submicron-fibers. Moreover, the integration of nHA with PBLG-fibers through hydrogen bonding contributes to the improvement of printability and mechanical properties. This method of ethanol-assisted fiber generation is successful with concentrated PBLG solutions, overcoming the limitation of previous research that focused only on dilute solutions. To expand the printable window, an ethanol-gel is developed as a support to achieve omnidirectional printing, resolving the issue of interlayer collapse caused by gravity and the conflict between printability and biomimetic fibers generation, optimizing the biomimetic bone manufacturing, leading to the precise biomimetic design of bone structures.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"95 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202419464","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The manufacturing of biomimetic bone characterized by an organic–inorganic combination and fibrous structure has garnered significant attention. Inspired by the formation of multi-layered fibrous structures in bone tissue, this study is based on the fibril assembled from poly(γ-benzyl-L-glutamate) (PBLG) in helicogenic solvent, proposing a non-solvent-assisted 3D printing method for realizing the PBLG 3D printing while generating biomimetic fiber structures in One-Step to mimic the formation of collagen fiber bundles. The unprintable mixture of PBLG and hydroxyapatite nanoparticles (nHA) in 1,4-dioxane exhibits extrudability, self-supporting properties, and plasticity in ethanol. Meanwhile, ethanol-assisted printing leads to the spontaneous growth of PBLG-fibrils into submicron-fibers. Moreover, the integration of nHA with PBLG-fibers through hydrogen bonding contributes to the improvement of printability and mechanical properties. This method of ethanol-assisted fiber generation is successful with concentrated PBLG solutions, overcoming the limitation of previous research that focused only on dilute solutions. To expand the printable window, an ethanol-gel is developed as a support to achieve omnidirectional printing, resolving the issue of interlayer collapse caused by gravity and the conflict between printability and biomimetic fibers generation, optimizing the biomimetic bone manufacturing, leading to the precise biomimetic design of bone structures.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Liquid Water Molecular Connected Quantum Dots for Self-Driven Photodetector Heterogeneous Doping via Methyl-Encapsulated Fumed Silica Enabling Weak Solvated and Self-Purified Electrolyte in Long-Term High-Voltage Lithium Batteries Hierarchical Composite Polyimide Aerogels with Hyperbranched Siloxane for High Electromagnetic Wave Absorption Phosphorus-Mediated Selenium Dual Atoms for Bifunctional Oxygen Reactions and Long-Life Low-Temperature Energy Conversion Electrically Detachable and Fully Recyclable Pressure Sensitive Ionoadhesive Tapes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1