High-performance solid-state proton gating membranes based on two-dimensional hydrogen-bonded organic framework composites

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2025-01-17 DOI:10.1038/s41467-025-56228-8
Dandan Lei, Yixiang Wang, Qixiang Zhang, Shuqi Wang, Lei Jiang, Zhen Zhang
{"title":"High-performance solid-state proton gating membranes based on two-dimensional hydrogen-bonded organic framework composites","authors":"Dandan Lei, Yixiang Wang, Qixiang Zhang, Shuqi Wang, Lei Jiang, Zhen Zhang","doi":"10.1038/s41467-025-56228-8","DOIUrl":null,"url":null,"abstract":"<p>Biological ion channels exhibit strong gating effects due to their zero-current closed states. However, the gating capabilities of artificial nanochannels have typically fallen short of biological channels, primarily owing to the larger nanopores that fail to completely block ion transport in the off-states. Here, we demonstrate solid-state hydrogen-bonded organic frameworks-based membranes to achieve high-performance ambient humidity-controlled proton gating, accomplished by switching the proton transport pathway instead of relying on conventional ion blockage/activation effects. Density functional theory calculations reveal that the reversible formation and disruption of humidity-induced water bridges within the frameworks facilitates the switching of proton transport mode from the adsorption site hopping to the Grotthuss mechanism. This transition, coupled with the introduction of bacterial cellulose to enhance desorption/adsorption of water clusters, enables us to achieve a superior proton gating ratio of up to 5740, surpassing state-of-the-art solid-state gating devices. Moreover, the developed membrane operates entirely on solid-state principles, rendering it highly versatile for a myriad of applications from environmental detection to human health monitoring. This study offers perspectives for the design of efficient proton gating systems.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"1 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56228-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Biological ion channels exhibit strong gating effects due to their zero-current closed states. However, the gating capabilities of artificial nanochannels have typically fallen short of biological channels, primarily owing to the larger nanopores that fail to completely block ion transport in the off-states. Here, we demonstrate solid-state hydrogen-bonded organic frameworks-based membranes to achieve high-performance ambient humidity-controlled proton gating, accomplished by switching the proton transport pathway instead of relying on conventional ion blockage/activation effects. Density functional theory calculations reveal that the reversible formation and disruption of humidity-induced water bridges within the frameworks facilitates the switching of proton transport mode from the adsorption site hopping to the Grotthuss mechanism. This transition, coupled with the introduction of bacterial cellulose to enhance desorption/adsorption of water clusters, enables us to achieve a superior proton gating ratio of up to 5740, surpassing state-of-the-art solid-state gating devices. Moreover, the developed membrane operates entirely on solid-state principles, rendering it highly versatile for a myriad of applications from environmental detection to human health monitoring. This study offers perspectives for the design of efficient proton gating systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Yttrium-doped NiMo-MoO2 heterostructure electrocatalysts for hydrogen production from alkaline seawater Metal-organic cage crosslinked nanocomposites with enhanced high-temperature capacitive energy storage performance Interferon-α promotes HLA-B-restricted presentation of conventional and alternative antigens in human pancreatic β-cells High-throughput method characterizes hundreds of previously unknown antibiotic resistance mutations Comparative transcriptomics in serial organs uncovers early and pan-organ developmental changes associated with organ-specific morphological adaptation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1