Multimodal deep learning-based automatic generation of repair proposals for steel bridge shallow damage

IF 9.6 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Automation in Construction Pub Date : 2025-01-13 DOI:10.1016/j.autcon.2025.105961
Honghong Song, Xiaofeng Zhu, Haijiang Li, Gang Yang
{"title":"Multimodal deep learning-based automatic generation of repair proposals for steel bridge shallow damage","authors":"Honghong Song, Xiaofeng Zhu, Haijiang Li, Gang Yang","doi":"10.1016/j.autcon.2025.105961","DOIUrl":null,"url":null,"abstract":"As bridges age, manual repair decision-making methods struggle to meet growing maintenance demands. This paper develops AI systems that can imitate experts' decision processes by mining implicit relationships between bridge damage images and corresponding repair proposals. A multimodal deep learning-based end-to-end decision-making method is proposed to extract and map features of bridge damage images and repair proposal texts, automating damage repair proposal generation. The model is trained and validated using a dataset from historical inspection reports. The model's image feature extraction is evaluated using Class Activation Mapping (CAM), while text generation achieved BLEU-1 to BLEU-4 scores of 0.76, 0.743, 0.712, and 0.705, respectively, with 82 % accuracy in human evaluation. The results indicate the model's effectiveness in handling complex image features and generating long text, addressing challenges in automated bridge repair decision-making.","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"30 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.autcon.2025.105961","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

As bridges age, manual repair decision-making methods struggle to meet growing maintenance demands. This paper develops AI systems that can imitate experts' decision processes by mining implicit relationships between bridge damage images and corresponding repair proposals. A multimodal deep learning-based end-to-end decision-making method is proposed to extract and map features of bridge damage images and repair proposal texts, automating damage repair proposal generation. The model is trained and validated using a dataset from historical inspection reports. The model's image feature extraction is evaluated using Class Activation Mapping (CAM), while text generation achieved BLEU-1 to BLEU-4 scores of 0.76, 0.743, 0.712, and 0.705, respectively, with 82 % accuracy in human evaluation. The results indicate the model's effectiveness in handling complex image features and generating long text, addressing challenges in automated bridge repair decision-making.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多模态深度学习的钢桥浅损修复方案自动生成
随着桥梁的老化,人工维修决策方法难以满足日益增长的维修需求。本文开发的人工智能系统可以通过挖掘桥梁损伤图像和相应修复建议之间的隐含关系来模仿专家的决策过程。提出了一种基于多模态深度学习的端到端决策方法,对桥梁损伤图像和修复建议文本进行特征提取和映射,实现损伤修复建议的自动生成。该模型使用来自历史检查报告的数据集进行训练和验证。使用类激活映射(Class Activation Mapping, CAM)对模型的图像特征提取进行评估,而文本生成的BLEU-1到BLEU-4得分分别为0.76、0.743、0.712和0.705,人工评估的准确率为82%。结果表明,该模型在处理复杂图像特征和生成长文本方面是有效的,解决了自动化桥梁维修决策的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Automation in Construction
Automation in Construction 工程技术-工程:土木
CiteScore
19.20
自引率
16.50%
发文量
563
审稿时长
8.5 months
期刊介绍: Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities. The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.
期刊最新文献
Towards worker-centric construction scene understanding: Status quo and future directions Multi-sensor data fusion and deep learning-based prediction of excavator bucket fill rates Image inpainting using diffusion models to restore eaves tile patterns in Chinese heritage buildings Detection of helmet use among construction workers via helmet-head region matching and state tracking Automated point positioning for robotic spot welding using integrated 2D drawings and structured light cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1