Honghong Song, Xiaofeng Zhu, Haijiang Li, Gang Yang
{"title":"Multimodal deep learning-based automatic generation of repair proposals for steel bridge shallow damage","authors":"Honghong Song, Xiaofeng Zhu, Haijiang Li, Gang Yang","doi":"10.1016/j.autcon.2025.105961","DOIUrl":null,"url":null,"abstract":"As bridges age, manual repair decision-making methods struggle to meet growing maintenance demands. This paper develops AI systems that can imitate experts' decision processes by mining implicit relationships between bridge damage images and corresponding repair proposals. A multimodal deep learning-based end-to-end decision-making method is proposed to extract and map features of bridge damage images and repair proposal texts, automating damage repair proposal generation. The model is trained and validated using a dataset from historical inspection reports. The model's image feature extraction is evaluated using Class Activation Mapping (CAM), while text generation achieved BLEU-1 to BLEU-4 scores of 0.76, 0.743, 0.712, and 0.705, respectively, with 82 % accuracy in human evaluation. The results indicate the model's effectiveness in handling complex image features and generating long text, addressing challenges in automated bridge repair decision-making.","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"30 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.autcon.2025.105961","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
As bridges age, manual repair decision-making methods struggle to meet growing maintenance demands. This paper develops AI systems that can imitate experts' decision processes by mining implicit relationships between bridge damage images and corresponding repair proposals. A multimodal deep learning-based end-to-end decision-making method is proposed to extract and map features of bridge damage images and repair proposal texts, automating damage repair proposal generation. The model is trained and validated using a dataset from historical inspection reports. The model's image feature extraction is evaluated using Class Activation Mapping (CAM), while text generation achieved BLEU-1 to BLEU-4 scores of 0.76, 0.743, 0.712, and 0.705, respectively, with 82 % accuracy in human evaluation. The results indicate the model's effectiveness in handling complex image features and generating long text, addressing challenges in automated bridge repair decision-making.
期刊介绍:
Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities.
The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.