Multi-objective optimization control for shield cutter wear and cutting performance using LightGBM and enhanced NSGA-II

IF 9.6 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Automation in Construction Pub Date : 2025-01-13 DOI:10.1016/j.autcon.2024.105957
Ziwei Yin, Jianwei Jiao, Ping Xie, Hanbin Luo, Linchun Wei
{"title":"Multi-objective optimization control for shield cutter wear and cutting performance using LightGBM and enhanced NSGA-II","authors":"Ziwei Yin, Jianwei Jiao, Ping Xie, Hanbin Luo, Linchun Wei","doi":"10.1016/j.autcon.2024.105957","DOIUrl":null,"url":null,"abstract":"Varying results in cutter wear and cutting performance can be observed based on different selections of shield operational parameters, particularly in hard rock or soil with a high quartz content. Improperly selecting operational parameters may result in excessive wear and reduced cutting performance, leading to longer project duration and increased costs. Furthermore, it is still challenging to balance cutter wear and cutting performance. To address these issues, a multi-objective optimization (MOO) framework based on the Light Gradient Boosting Machine (LightGBM) algorithm and the enhanced non-dominated sorting genetic-II (NSGA-II) algorithm is proposed to predict and optimize the cutter wear and cutting performance. To validate this framework, a shield tunneling project in China is presented. The results show that the efficiency and accuracy of predicting and optimizing the two objectives have been improved compared with other common methods. This MOO framework is valuable for operators to formulate rational operational control strategies.","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"96 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.autcon.2024.105957","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Varying results in cutter wear and cutting performance can be observed based on different selections of shield operational parameters, particularly in hard rock or soil with a high quartz content. Improperly selecting operational parameters may result in excessive wear and reduced cutting performance, leading to longer project duration and increased costs. Furthermore, it is still challenging to balance cutter wear and cutting performance. To address these issues, a multi-objective optimization (MOO) framework based on the Light Gradient Boosting Machine (LightGBM) algorithm and the enhanced non-dominated sorting genetic-II (NSGA-II) algorithm is proposed to predict and optimize the cutter wear and cutting performance. To validate this framework, a shield tunneling project in China is presented. The results show that the efficiency and accuracy of predicting and optimizing the two objectives have been improved compared with other common methods. This MOO framework is valuable for operators to formulate rational operational control strategies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于LightGBM和增强型NSGA-II的盾构刀磨损和切削性能多目标优化控制
根据盾构操作参数的不同选择,可以观察到刀具磨损和切削性能的不同结果,特别是在石英含量高的硬岩石或土壤中。如果作业参数选择不当,可能会造成磨损过大,降低切削性能,延长工程工期,增加成本。此外,平衡刀具磨损和切削性能仍然具有挑战性。针对这些问题,提出了基于光梯度增强机(Light Gradient Boosting Machine, LightGBM)算法和增强型非支配排序遗传- ii (non- dominance sorting genetic-II, NSGA-II)算法的多目标优化(MOO)框架,对刀具磨损和切削性能进行预测和优化。为了验证这一框架,介绍了中国盾构隧道工程。结果表明,与其他常用方法相比,预测和优化这两个目标的效率和精度都有所提高。该MOO框架可为作业者制定合理的作业控制策略提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Automation in Construction
Automation in Construction 工程技术-工程:土木
CiteScore
19.20
自引率
16.50%
发文量
563
审稿时长
8.5 months
期刊介绍: Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities. The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.
期刊最新文献
Towards worker-centric construction scene understanding: Status quo and future directions Multi-sensor data fusion and deep learning-based prediction of excavator bucket fill rates Image inpainting using diffusion models to restore eaves tile patterns in Chinese heritage buildings Detection of helmet use among construction workers via helmet-head region matching and state tracking Automated point positioning for robotic spot welding using integrated 2D drawings and structured light cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1