{"title":"Reducing Structural Nonidentifiabilities in Upstream Bioprocess Models Using Profile‐Likelihood","authors":"Heiko Babel, Ola Omar, Albert Paul, Joachim Bär","doi":"10.1002/bit.28922","DOIUrl":null,"url":null,"abstract":"Process models are increasingly used to support upstream process development in the biopharmaceutical industry for process optimization, scale‐up and to reduce experimental effort. Parametric unstructured models based on biological mechanisms are highly promising, since they do not require large amounts of data. The critical part in the application is the certainty of the parameter estimates, since uncertainty of the parameter estimates propagates to model predictions and can increase the risk associated with those predictions. Currently Fisher‐Information‐Matrix based approximations or Monte‐Carlo approaches are used to estimate parameter confidence intervals and regularization approaches to decrease parameter uncertainty. Here we apply profile likelihood to determine parameter identifiability of a recent upstream process model. We have investigated the effect of data amount on identifiability and found out that addition of data reduces non‐identifiability. The likelihood profiles of nonidentifiable parameters were then used to uncover structural model changes. These changes effectively alleviate the remaining non‐identifiabilities except for a single parameter out of 21 total parameters. We present the first application of profile likelihood to a complete upstream process model. Profile likelihood is a highly suitable method to determine parameter confidence intervals in upstream process models and provides reliable estimates even with nonlinear models and limited data.","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"7 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bit.28922","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Process models are increasingly used to support upstream process development in the biopharmaceutical industry for process optimization, scale‐up and to reduce experimental effort. Parametric unstructured models based on biological mechanisms are highly promising, since they do not require large amounts of data. The critical part in the application is the certainty of the parameter estimates, since uncertainty of the parameter estimates propagates to model predictions and can increase the risk associated with those predictions. Currently Fisher‐Information‐Matrix based approximations or Monte‐Carlo approaches are used to estimate parameter confidence intervals and regularization approaches to decrease parameter uncertainty. Here we apply profile likelihood to determine parameter identifiability of a recent upstream process model. We have investigated the effect of data amount on identifiability and found out that addition of data reduces non‐identifiability. The likelihood profiles of nonidentifiable parameters were then used to uncover structural model changes. These changes effectively alleviate the remaining non‐identifiabilities except for a single parameter out of 21 total parameters. We present the first application of profile likelihood to a complete upstream process model. Profile likelihood is a highly suitable method to determine parameter confidence intervals in upstream process models and provides reliable estimates even with nonlinear models and limited data.
期刊介绍:
Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include:
-Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering
-Animal-cell biotechnology, including media development
-Applied aspects of cellular physiology, metabolism, and energetics
-Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology
-Biothermodynamics
-Biofuels, including biomass and renewable resource engineering
-Biomaterials, including delivery systems and materials for tissue engineering
-Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control
-Biosensors and instrumentation
-Computational and systems biology, including bioinformatics and genomic/proteomic studies
-Environmental biotechnology, including biofilms, algal systems, and bioremediation
-Metabolic and cellular engineering
-Plant-cell biotechnology
-Spectroscopic and other analytical techniques for biotechnological applications
-Synthetic biology
-Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems
The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.