Real‐Time Auto Controlling of Viable Cell Density in Perfusion Cultivation Aided by In‐Line Dielectric Spectroscopy With Segmented Adaptive PLS Model

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biotechnology and Bioengineering Pub Date : 2025-01-18 DOI:10.1002/bit.28930
Yunpeng Sun, Qiongqiong Zhang, Yunfei He, Dongliang Chen, Zheyu Wang, Xiang Zheng, Mingyue Fang, Hang Zhou
{"title":"Real‐Time Auto Controlling of Viable Cell Density in Perfusion Cultivation Aided by In‐Line Dielectric Spectroscopy With Segmented Adaptive PLS Model","authors":"Yunpeng Sun, Qiongqiong Zhang, Yunfei He, Dongliang Chen, Zheyu Wang, Xiang Zheng, Mingyue Fang, Hang Zhou","doi":"10.1002/bit.28930","DOIUrl":null,"url":null,"abstract":"Serving as a dedicated process analytical technology (PAT) tool for biomass monitoring and control, the capacitance probe, or dielectric spectroscopy, is showing great potential in robust pharmaceutical manufacturing, especially with the growing interest in integrated continuous bioprocessing. Despite its potential, challenges still exist in terms of its accuracy and applicability, particularly when it is used to monitor cells during stationary and decline phases. In this study, data pre‐processing methods were first evaluated through cross‐validation, where the first‐order derivative emerged as the most effective method to diminish variability in prediction accuracy across different training datasets. Subsequently, a segmented adaptive partial least squares (SA‐PLS) model was developed, and its accuracy and universality were demonstrated through several validation studies using different clones and culture processes. Furthermore, a real‐time viable cell density (VCD) auto‐control system in perfusion culture was established, where the VCD was maintained around the target with notable precision and robustness. This model enhanced the monitoring capabilities of capacitance‐based PAT tools throughout the cultivation, expanded their application in cell‐specific automatic control strategies, and contributed vitally to the advancement of continuous manufacturing paradigms.","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"11 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bit.28930","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Serving as a dedicated process analytical technology (PAT) tool for biomass monitoring and control, the capacitance probe, or dielectric spectroscopy, is showing great potential in robust pharmaceutical manufacturing, especially with the growing interest in integrated continuous bioprocessing. Despite its potential, challenges still exist in terms of its accuracy and applicability, particularly when it is used to monitor cells during stationary and decline phases. In this study, data pre‐processing methods were first evaluated through cross‐validation, where the first‐order derivative emerged as the most effective method to diminish variability in prediction accuracy across different training datasets. Subsequently, a segmented adaptive partial least squares (SA‐PLS) model was developed, and its accuracy and universality were demonstrated through several validation studies using different clones and culture processes. Furthermore, a real‐time viable cell density (VCD) auto‐control system in perfusion culture was established, where the VCD was maintained around the target with notable precision and robustness. This model enhanced the monitoring capabilities of capacitance‐based PAT tools throughout the cultivation, expanded their application in cell‐specific automatic control strategies, and contributed vitally to the advancement of continuous manufacturing paradigms.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
联机介电光谱与分段自适应PLS模型辅助灌注培养中活细胞密度的实时自动控制
作为生物质监测和控制的专用过程分析技术(PAT)工具,电容探针或介电光谱在强大的制药制造中显示出巨大的潜力,特别是随着人们对集成连续生物处理的兴趣日益浓厚。尽管具有潜力,但在准确性和适用性方面仍然存在挑战,特别是当它用于监测处于静止和衰退阶段的细胞时。在本研究中,数据预处理方法首先通过交叉验证进行评估,其中一阶导数成为减少不同训练数据集预测准确性差异的最有效方法。随后,建立了一个分段自适应偏最小二乘(SA‐PLS)模型,并通过使用不同的克隆和培养过程进行了多次验证研究,证明了其准确性和普遍性。此外,在灌注培养中建立了一个实时活细胞密度(VCD)自动控制系统,其中VCD保持在目标周围,具有显著的精度和鲁棒性。该模型增强了基于电容的PAT工具在整个培养过程中的监测能力,扩展了它们在细胞特异性自动控制策略中的应用,并为连续制造范式的进步做出了重要贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biotechnology and Bioengineering
Biotechnology and Bioengineering 工程技术-生物工程与应用微生物
CiteScore
7.90
自引率
5.30%
发文量
280
审稿时长
2.1 months
期刊介绍: Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include: -Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering -Animal-cell biotechnology, including media development -Applied aspects of cellular physiology, metabolism, and energetics -Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology -Biothermodynamics -Biofuels, including biomass and renewable resource engineering -Biomaterials, including delivery systems and materials for tissue engineering -Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control -Biosensors and instrumentation -Computational and systems biology, including bioinformatics and genomic/proteomic studies -Environmental biotechnology, including biofilms, algal systems, and bioremediation -Metabolic and cellular engineering -Plant-cell biotechnology -Spectroscopic and other analytical techniques for biotechnological applications -Synthetic biology -Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.
期刊最新文献
Derivation of an Upscaled Model for Xylitol Production With Immobilized Microorganisms Development of Methods to Produce SARS CoV-2 Virus-Like Particles at Scale Zeolitic Imidazole Framework-8 Nanoparticles as an Alternative to Freund's Adjuvant for Klebsiella pneumoniae Recombinant Protein Vaccine Biotechnology and Bioengineering: Volume 122, Number 3, March 2025 Enhanced Natural Killer Cell Proliferation by Stress-Induced Feeder Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1