{"title":"4D Printed Cardiac Occlusion Device with Efficient Anticoagulation, Proendothelialization, and Precise Localization","authors":"Mengjiao Yang, Yingjie Xu, Xiaozhou Xin, Chengjun Zeng, Yuanshi Li, Cheng Lin, Yanju Liu, Yuanyuan Guo, Jinsong Leng","doi":"10.1002/adfm.202412533","DOIUrl":null,"url":null,"abstract":"Congenital heart defects (CHDs) are one of the most common congenital malformations, accounting for ≈30% of all congenital malformations. Interventional implantation of occlusion devices is becoming the preferred treatment for CHDs. However, current occlusion devices suffer from serious problems, such as thrombosis, slow endothelialization, imprecise localization, abrasion, displacement, etc. Here, a multifunctional drug-carrying fiber platform with structural similar to the extracellular matrix is innovatively designed to develop 4D printed cardiac occlusion devices, with characteristics of efficient anticoagulation, proendothelialization, and precise localization. Biomimetic ligament structures are designed to achieve a similar mechanical response to myocardial tissue, which helps to synergize deformation and reduce tissue wear. A structural design method for biomimetic personalized multilevel occlusion devices is proposed, facilitating further improvement of sealing reliability. The radiopaque 4D printed shape memory composites are developed, realizing the complete visualization and precise localization of the device in vivo. The novel 4D printed cardiac occlusion device provides an effective way to reduce the risk of complications and contributes to versatility. It is expected to be a next-generation multifunctional repair device for personalized treatment of CHDs.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"32 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202412533","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Congenital heart defects (CHDs) are one of the most common congenital malformations, accounting for ≈30% of all congenital malformations. Interventional implantation of occlusion devices is becoming the preferred treatment for CHDs. However, current occlusion devices suffer from serious problems, such as thrombosis, slow endothelialization, imprecise localization, abrasion, displacement, etc. Here, a multifunctional drug-carrying fiber platform with structural similar to the extracellular matrix is innovatively designed to develop 4D printed cardiac occlusion devices, with characteristics of efficient anticoagulation, proendothelialization, and precise localization. Biomimetic ligament structures are designed to achieve a similar mechanical response to myocardial tissue, which helps to synergize deformation and reduce tissue wear. A structural design method for biomimetic personalized multilevel occlusion devices is proposed, facilitating further improvement of sealing reliability. The radiopaque 4D printed shape memory composites are developed, realizing the complete visualization and precise localization of the device in vivo. The novel 4D printed cardiac occlusion device provides an effective way to reduce the risk of complications and contributes to versatility. It is expected to be a next-generation multifunctional repair device for personalized treatment of CHDs.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.