Zheng Xu, Shuangyu Liu, Jian Xie, Aijun Zhou, Jicheng Jiang, Yinda Li, Yunhao Lu, Yang Nie, Xiongwen Xu, Jian Tu, Bo Xu, Peng Zhang, Xinbing Zhao
{"title":"From Na to K-Based Prussian Blue: A Path Toward Cathode Materials for Extreme Environment","authors":"Zheng Xu, Shuangyu Liu, Jian Xie, Aijun Zhou, Jicheng Jiang, Yinda Li, Yunhao Lu, Yang Nie, Xiongwen Xu, Jian Tu, Bo Xu, Peng Zhang, Xinbing Zhao","doi":"10.1002/adfm.202420986","DOIUrl":null,"url":null,"abstract":"Prussian blue (PB) is regarded as a promising host for Na or K storage because of its sustainable precursor elements (e.g., Mn, Fe) and open framework structure. However, unstable structure, high crystal H<sub>2</sub>O content, and risky HCN generation restrain its practical applications. In this work, after systematical investigation of structural evolution from Na-based to K-based PB and its relationship with electrochemical properties, it is clarified that low crystal water content, high K content, and trace Na doping are essential for a robust structure and stable cycling of PB. It is found that a trace Na-doped K-based PB exhibits comprehensive properties of low crystal water content (3.2 wt%), high thermal stability (over 340 °C), and superior cycling stability (84.3% after 6300 cycles at 5 C). Besides, the PB can also present stable cycling under harsh conditions, such as with intermittent-overcharge/overdischarge steps (4.8 V/1.2 V, 93.3% after 2100 cycles at 5 C), in a wide voltage range (93.2% after 1000 cycles at 1.5‒4.5 V/5 C), under a high rate (83.7% after 4350 cycles at 10 C), and at a high temperature (92.0% after 1650 cycles at 45 °C/1 C). The superior electrochemical properties are attributed to its structural robustness even under harsh conditions.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"28 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202420986","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Prussian blue (PB) is regarded as a promising host for Na or K storage because of its sustainable precursor elements (e.g., Mn, Fe) and open framework structure. However, unstable structure, high crystal H2O content, and risky HCN generation restrain its practical applications. In this work, after systematical investigation of structural evolution from Na-based to K-based PB and its relationship with electrochemical properties, it is clarified that low crystal water content, high K content, and trace Na doping are essential for a robust structure and stable cycling of PB. It is found that a trace Na-doped K-based PB exhibits comprehensive properties of low crystal water content (3.2 wt%), high thermal stability (over 340 °C), and superior cycling stability (84.3% after 6300 cycles at 5 C). Besides, the PB can also present stable cycling under harsh conditions, such as with intermittent-overcharge/overdischarge steps (4.8 V/1.2 V, 93.3% after 2100 cycles at 5 C), in a wide voltage range (93.2% after 1000 cycles at 1.5‒4.5 V/5 C), under a high rate (83.7% after 4350 cycles at 10 C), and at a high temperature (92.0% after 1650 cycles at 45 °C/1 C). The superior electrochemical properties are attributed to its structural robustness even under harsh conditions.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.