Dunja Petrovic, Luke Slade, Yiorgos Paikopoulos, Davide D’Andrea, Nevena Savic, Ana Stancic, Jan Lj Miljkovic, Thibaut Vignane, Maria Kyriaki Drekolia, Dusan Mladenovic, Nikola Sutulovic, Alice Refeyton, Milica Kolakovic, Vladimir M. Jovanovic, Jasmina Zivanovic, Marko Miler, Valentina Vellecco, Vincenzo Brancaleone, Mariarosaria Bucci, Alva M. Casey, Milos R. Filipovic
{"title":"Ergothioneine improves healthspan of aged animals by enhancing cGPDH activity through CSE-dependent persulfidation","authors":"Dunja Petrovic, Luke Slade, Yiorgos Paikopoulos, Davide D’Andrea, Nevena Savic, Ana Stancic, Jan Lj Miljkovic, Thibaut Vignane, Maria Kyriaki Drekolia, Dusan Mladenovic, Nikola Sutulovic, Alice Refeyton, Milica Kolakovic, Vladimir M. Jovanovic, Jasmina Zivanovic, Marko Miler, Valentina Vellecco, Vincenzo Brancaleone, Mariarosaria Bucci, Alva M. Casey, Milos R. Filipovic","doi":"10.1016/j.cmet.2024.12.008","DOIUrl":null,"url":null,"abstract":"Ergothioneine (ET), a dietary thione/thiol, is receiving growing attention for its possible benefits in healthy aging and metabolic resilience. Our study investigates ET’s effects on healthspan in aged animals, revealing lifespan extension and enhanced mobility in <em>Caenorhabditis elegans</em>, accompanied by improved stress resistance and reduced age-associated biomarkers. In aged rats, ET administration enhances exercise endurance, muscle mass, and vascularization, concomitant with higher NAD<sup>+</sup> levels in muscle. Mechanistically, ET acts as an alternative substrate for cystathionine gamma-lyase (CSE), stimulating H<sub>2</sub>S production, which increases protein persulfidation of more than 300 protein targets. Among these, protein-persulfidation-driven activation of cytosolic glycerol-3-phosphate dehydrogenase (cGPDH) primarily contributes to the ET-induced NAD<sup>+</sup> increase. ET’s effects are abolished in models lacking CSE or cGPDH, highlighting the essential role of H<sub>2</sub>S signaling and protein persulfidation. These findings elucidate ET’s multifaceted actions and provide insights into its therapeutic potential for combating age-related muscle decline and metabolic perturbations.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"12 1","pages":""},"PeriodicalIF":27.7000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell metabolism","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cmet.2024.12.008","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ergothioneine (ET), a dietary thione/thiol, is receiving growing attention for its possible benefits in healthy aging and metabolic resilience. Our study investigates ET’s effects on healthspan in aged animals, revealing lifespan extension and enhanced mobility in Caenorhabditis elegans, accompanied by improved stress resistance and reduced age-associated biomarkers. In aged rats, ET administration enhances exercise endurance, muscle mass, and vascularization, concomitant with higher NAD+ levels in muscle. Mechanistically, ET acts as an alternative substrate for cystathionine gamma-lyase (CSE), stimulating H2S production, which increases protein persulfidation of more than 300 protein targets. Among these, protein-persulfidation-driven activation of cytosolic glycerol-3-phosphate dehydrogenase (cGPDH) primarily contributes to the ET-induced NAD+ increase. ET’s effects are abolished in models lacking CSE or cGPDH, highlighting the essential role of H2S signaling and protein persulfidation. These findings elucidate ET’s multifaceted actions and provide insights into its therapeutic potential for combating age-related muscle decline and metabolic perturbations.
期刊介绍:
Cell Metabolism is a top research journal established in 2005 that focuses on publishing original and impactful papers in the field of metabolic research.It covers a wide range of topics including diabetes, obesity, cardiovascular biology, aging and stress responses, circadian biology, and many others.
Cell Metabolism aims to contribute to the advancement of metabolic research by providing a platform for the publication and dissemination of high-quality research and thought-provoking articles.