{"title":"Context-Enriched Contrastive Loss: Enhancing Presentation of Inherent Sample Connections in Contrastive Learning Framework","authors":"Haojin Deng;Yimin Yang","doi":"10.1109/TMM.2024.3521796","DOIUrl":null,"url":null,"abstract":"Contrastive learning has gained popularity and pushes state-of-the-art performance across numerous large-scale benchmarks. In contrastive learning, the contrastive loss function plays a pivotal role in discerning similarities between samples through techniques such as rotation or cropping. However, this learning mechanism can also introduce information distortion from the augmented samples. This is because the trained model may develop a significant overreliance on information from samples with identical labels, while concurrently neglecting positive pairs that originate from the same initial image, especially in expansive datasets. This paper proposes a context-enriched contrastive loss function that concurrently improves learning effectiveness and addresses the information distortion by encompassing two convergence targets. The first component, which is notably sensitive to label contrast, differentiates between features of identical and distinct classes which boosts the contrastive training efficiency. Meanwhile, the second component draws closer the augmented samples from the same source image and distances all other samples, similar to self-supervised learning. We evaluate the proposed approach on image classification tasks, which are among the most widely accepted 8 recognition large-scale benchmark datasets: CIFAR10, CIFAR100, Caltech-101, Caltech-256, ImageNet, BiasedMNIST, UTKFace, and CelebA datasets. The experimental results demonstrate that the proposed method achieves improvements over 16 state-of-the-art contrastive learning methods in terms of both generalization performance and learning convergence speed. Interestingly, our technique stands out in addressing systematic distortion tasks. It demonstrates a 22.9% improvement compared to original contrastive loss functions in the downstream BiasedMNIST dataset, highlighting its promise for more efficient and equitable downstream training.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"27 ","pages":"429-441"},"PeriodicalIF":8.4000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10814085/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Contrastive learning has gained popularity and pushes state-of-the-art performance across numerous large-scale benchmarks. In contrastive learning, the contrastive loss function plays a pivotal role in discerning similarities between samples through techniques such as rotation or cropping. However, this learning mechanism can also introduce information distortion from the augmented samples. This is because the trained model may develop a significant overreliance on information from samples with identical labels, while concurrently neglecting positive pairs that originate from the same initial image, especially in expansive datasets. This paper proposes a context-enriched contrastive loss function that concurrently improves learning effectiveness and addresses the information distortion by encompassing two convergence targets. The first component, which is notably sensitive to label contrast, differentiates between features of identical and distinct classes which boosts the contrastive training efficiency. Meanwhile, the second component draws closer the augmented samples from the same source image and distances all other samples, similar to self-supervised learning. We evaluate the proposed approach on image classification tasks, which are among the most widely accepted 8 recognition large-scale benchmark datasets: CIFAR10, CIFAR100, Caltech-101, Caltech-256, ImageNet, BiasedMNIST, UTKFace, and CelebA datasets. The experimental results demonstrate that the proposed method achieves improvements over 16 state-of-the-art contrastive learning methods in terms of both generalization performance and learning convergence speed. Interestingly, our technique stands out in addressing systematic distortion tasks. It demonstrates a 22.9% improvement compared to original contrastive loss functions in the downstream BiasedMNIST dataset, highlighting its promise for more efficient and equitable downstream training.
期刊介绍:
The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.