Meijing Zhang;Mengxue Chen;Qi Li;Yanchen Chen;Rui Lin;Xiaolian Li;Shengfeng He;Wenxi Liu
{"title":"Category-Contrastive Fine-Grained Crowd Counting and Beyond","authors":"Meijing Zhang;Mengxue Chen;Qi Li;Yanchen Chen;Rui Lin;Xiaolian Li;Shengfeng He;Wenxi Liu","doi":"10.1109/TMM.2024.3521823","DOIUrl":null,"url":null,"abstract":"Crowd counting has drawn increasing attention across various fields. However, existing crowd counting tasks primarily focus on estimating the overall population, ignoring the behavioral and semantic information of different social groups within the crowd. In this paper, we aim to address a newly proposed research problem, namely fine-grained crowd counting, which involves identifying different categories of individuals and accurately counting them in static images. In order to fully leverage the categorical information in static crowd images, we propose a two-tier salient feature propagation module designed to sequentially extract semantic information from both the crowd and its surrounding environment. Additionally, we introduce a category difference loss to refine the feature representation by highlighting the differences between various crowd categories. Moreover, our proposed framework can adapt to a novel problem setup called few-example fine-grained crowd counting. This setup, unlike the original fine-grained crowd counting, requires only a few exemplar point annotations instead of dense annotations from predefined categories, making it applicable in a wider range of scenarios. The baseline model for this task can be established by substituting the loss function in our proposed model with a novel hybrid loss function that integrates point-oriented cross-entropy loss and category contrastive loss. Through comprehensive experiments, we present results in both the formulation and application of fine-grained crowd counting.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"27 ","pages":"477-488"},"PeriodicalIF":8.4000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10814710/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Crowd counting has drawn increasing attention across various fields. However, existing crowd counting tasks primarily focus on estimating the overall population, ignoring the behavioral and semantic information of different social groups within the crowd. In this paper, we aim to address a newly proposed research problem, namely fine-grained crowd counting, which involves identifying different categories of individuals and accurately counting them in static images. In order to fully leverage the categorical information in static crowd images, we propose a two-tier salient feature propagation module designed to sequentially extract semantic information from both the crowd and its surrounding environment. Additionally, we introduce a category difference loss to refine the feature representation by highlighting the differences between various crowd categories. Moreover, our proposed framework can adapt to a novel problem setup called few-example fine-grained crowd counting. This setup, unlike the original fine-grained crowd counting, requires only a few exemplar point annotations instead of dense annotations from predefined categories, making it applicable in a wider range of scenarios. The baseline model for this task can be established by substituting the loss function in our proposed model with a novel hybrid loss function that integrates point-oriented cross-entropy loss and category contrastive loss. Through comprehensive experiments, we present results in both the formulation and application of fine-grained crowd counting.
期刊介绍:
The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.