CopDDB: a descriptor database for copolymers and its applications to machine learning†

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY Digital discovery Pub Date : 2024-11-28 DOI:10.1039/D4DD00266K
Takayoshi Yoshimura, Hiromoto Kato, Shunto Oikawa, Taichi Inagaki, Shigehito Asano, Tetsunori Sugawara, Tomoyuki Miyao, Takamitsu Matsubara, Hiroharu Ajiro, Mikiya Fujii, Yu-ya Ohnishi and Miho Hatanaka
{"title":"CopDDB: a descriptor database for copolymers and its applications to machine learning†","authors":"Takayoshi Yoshimura, Hiromoto Kato, Shunto Oikawa, Taichi Inagaki, Shigehito Asano, Tetsunori Sugawara, Tomoyuki Miyao, Takamitsu Matsubara, Hiroharu Ajiro, Mikiya Fujii, Yu-ya Ohnishi and Miho Hatanaka","doi":"10.1039/D4DD00266K","DOIUrl":null,"url":null,"abstract":"<p >Polymer informatics, which involves applying data-driven science to polymers, has attracted considerable research interest. However, developing adequate descriptors for polymers, particularly copolymers, to facilitate machine learning (ML) models with limited datasets remains a challenge. To address this issue, we computed sets of parameters, including reaction energies and activation barriers of elementary reactions in the early stage of radical polymerization, for 2500 radical–monomer pairs derived from 50 commercially available monomers and constructed an open database named “Copolymer Descriptor Database”. Furthermore, we built ML models using our descriptors as explanatory variables and physical properties such as the reactivity ratio, monomer conversion, monomer composition ratio, and molecular weight as objective variables. These models achieved high predictive accuracy, demonstrating the potential of our descriptors to advance the field of polymer informatics.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 1","pages":" 195-203"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d4dd00266k?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d4dd00266k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Polymer informatics, which involves applying data-driven science to polymers, has attracted considerable research interest. However, developing adequate descriptors for polymers, particularly copolymers, to facilitate machine learning (ML) models with limited datasets remains a challenge. To address this issue, we computed sets of parameters, including reaction energies and activation barriers of elementary reactions in the early stage of radical polymerization, for 2500 radical–monomer pairs derived from 50 commercially available monomers and constructed an open database named “Copolymer Descriptor Database”. Furthermore, we built ML models using our descriptors as explanatory variables and physical properties such as the reactivity ratio, monomer conversion, monomer composition ratio, and molecular weight as objective variables. These models achieved high predictive accuracy, demonstrating the potential of our descriptors to advance the field of polymer informatics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
共聚物描述符数据库及其在机器学习中的应用
聚合物信息学涉及到将数据驱动的科学应用于聚合物,已经引起了相当大的研究兴趣。然而,开发足够的聚合物描述符,特别是共聚物,以促进有限数据集的机器学习(ML)模型仍然是一个挑战。为了解决这一问题,我们计算了50种市售单体衍生的2500对自由基-单体对在自由基聚合初期的反应能和基本反应的激活势垒等参数,并构建了一个名为“共聚物描述符数据库”的开放数据库。此外,我们使用我们的描述符作为解释变量和物理性质(如反应性比、单体转化率、单体组成比和分子量)作为客观变量来构建ML模型。这些模型达到了很高的预测精度,证明了我们的描述符在推进聚合物信息学领域的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Biophysics-guided uncertainty-aware deep learning uncovers high-affinity plastic-binding peptides. Back cover Predicting hydrogen atom transfer energy barriers using Gaussian process regression. Active learning driven prioritisation of compounds from on-demand libraries targeting the SARS-CoV-2 main protease. ULaMDyn: enhancing excited-state dynamics analysis through streamlined unsupervised learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1