Machine learning for accelerated prediction of lattice thermal conductivity at arbitrary temperature

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY Digital discovery Pub Date : 2024-11-27 DOI:10.1039/D4DD00286E
Zihe Li, Mengke Li, Yufeng Luo, Haibin Cao, Huijun Liu and Ying Fang
{"title":"Machine learning for accelerated prediction of lattice thermal conductivity at arbitrary temperature","authors":"Zihe Li, Mengke Li, Yufeng Luo, Haibin Cao, Huijun Liu and Ying Fang","doi":"10.1039/D4DD00286E","DOIUrl":null,"url":null,"abstract":"<p >Efficient evaluation of lattice thermal conductivity (<em>κ</em><small><sub>L</sub></small>) is critical for applications ranging from thermal management to energy conversion. In this work, we propose a neural network (NN) model that allows ready and accurate prediction of the <em>κ</em><small><sub>L</sub></small> of crystalline materials at arbitrary temperature. It is found that the data-driven model exhibits a high coefficient of determination between the real and predicted <em>κ</em><small><sub>L</sub></small>. Beyond the initial dataset, the strong predictive power of the NN model is further demonstrated by checking several systems randomly selected from previous first-principles studies. Most importantly, our model can realize high-throughput screening on countless systems either inside or beyond the existing databases, which is very beneficial for accelerated discovery or design of new materials with desired <em>κ</em><small><sub>L</sub></small>.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 1","pages":" 204-210"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d4dd00286e?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d4dd00286e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient evaluation of lattice thermal conductivity (κL) is critical for applications ranging from thermal management to energy conversion. In this work, we propose a neural network (NN) model that allows ready and accurate prediction of the κL of crystalline materials at arbitrary temperature. It is found that the data-driven model exhibits a high coefficient of determination between the real and predicted κL. Beyond the initial dataset, the strong predictive power of the NN model is further demonstrated by checking several systems randomly selected from previous first-principles studies. Most importantly, our model can realize high-throughput screening on countless systems either inside or beyond the existing databases, which is very beneficial for accelerated discovery or design of new materials with desired κL.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在任意温度下加速预测晶格热导率的机器学习
晶格导热系数(κL)的有效评估对于从热管理到能量转换的应用至关重要。在这项工作中,我们提出了一个神经网络(NN)模型,可以随时准确地预测任意温度下晶体材料的κL。发现数据驱动模型在实际和预测的κL之间有很高的决定系数。除了初始数据集之外,通过检查从先前的第一性原理研究中随机选择的几个系统,进一步证明了神经网络模型的强大预测能力。最重要的是,我们的模型可以在现有数据库内外的无数系统上实现高通量筛选,这对于加速发现或设计具有理想κL的新材料非常有益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Biophysics-guided uncertainty-aware deep learning uncovers high-affinity plastic-binding peptides. Back cover Predicting hydrogen atom transfer energy barriers using Gaussian process regression. Active learning driven prioritisation of compounds from on-demand libraries targeting the SARS-CoV-2 main protease. ULaMDyn: enhancing excited-state dynamics analysis through streamlined unsupervised learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1