Unidirectional bubble transportation on slippery micro-cone array electrodes enables spontaneous 99.99% gas separation in membrane-less water electrolysis†
{"title":"Unidirectional bubble transportation on slippery micro-cone array electrodes enables spontaneous 99.99% gas separation in membrane-less water electrolysis†","authors":"Linfeng Yu, Yingze Yang, Pengpeng Xie, Qingzhen Xu, Anuj Kumar, Liang Luo, Hui Li, Haijun Xu, Haohong Duan and Xiaoming Sun","doi":"10.1039/D4EY00184B","DOIUrl":null,"url":null,"abstract":"<p >Membrane-less electrolysis is utilized for many gaseous chemical productions. However, the problems of gas mixing and low energy efficiency remain huge obstacles for its practical application. Herein, we have prepared a biomimetic electrode by three-dimensional (3D) printing technology, featuring a “slippery aerophobic” surface and micro-cone array structure with tunable tilting angles. These electrodes enable the bubbles that are generated at the cone tip to “roll-up” rapidly along the electrode towards its base, rather than being directly released into the electrolyte, resulting in gas mixing. The unidirectional bubble transportation behavior was understood by a collective analysis of the Laplace pressure on cones, bubble buoyancy and irreversible hysteresis. As a proof of concept, we employed this biomimetic electrode in membrane-less water electrolysis. At a current density of 240 mA cm<small><sup>−2</sup></small>, we achieved the separation of H<small><sub>2</sub></small> and O<small><sub>2</sub></small> gases with >99.99% purity even with an electrode distance as short as 1.5 mm. This work demonstrated the efficiency of precisely manipulating bubble transportation in membrane-less electrolysis that does not rely on expensive membranes.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 1","pages":" 152-160"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ey/d4ey00184b?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EES catalysis","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ey/d4ey00184b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Membrane-less electrolysis is utilized for many gaseous chemical productions. However, the problems of gas mixing and low energy efficiency remain huge obstacles for its practical application. Herein, we have prepared a biomimetic electrode by three-dimensional (3D) printing technology, featuring a “slippery aerophobic” surface and micro-cone array structure with tunable tilting angles. These electrodes enable the bubbles that are generated at the cone tip to “roll-up” rapidly along the electrode towards its base, rather than being directly released into the electrolyte, resulting in gas mixing. The unidirectional bubble transportation behavior was understood by a collective analysis of the Laplace pressure on cones, bubble buoyancy and irreversible hysteresis. As a proof of concept, we employed this biomimetic electrode in membrane-less water electrolysis. At a current density of 240 mA cm−2, we achieved the separation of H2 and O2 gases with >99.99% purity even with an electrode distance as short as 1.5 mm. This work demonstrated the efficiency of precisely manipulating bubble transportation in membrane-less electrolysis that does not rely on expensive membranes.
无膜电解用于许多气体化学生产。然而,气体混合和能源效率低等问题仍然是其实际应用的巨大障碍。在此,我们利用三维打印技术制备了一种仿生电极,具有“光滑的疏气”表面和倾斜角度可调的微锥阵列结构。这些电极使在锥尖产生的气泡沿着电极迅速“卷起”,而不是直接释放到电解质中,导致气体混合。通过对锥上的拉普拉斯压力、气泡浮力和不可逆滞回的综合分析,理解了气泡的单向输运行为。作为概念验证,我们将这种仿生电极应用于无膜水电解。在240 mA cm−2的电流密度下,即使电极距离短至1.5 mm,我们也实现了纯度为99.99%的H2和O2气体的分离。这项工作证明了在不依赖昂贵膜的无膜电解中精确操纵气泡输送的效率。