Optimization of polyhydroxyalkanoate (PHA) production from biohythane pilot plant effluent by Cupriavidus necator TISTR 1335

IF 3.1 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biodegradation Pub Date : 2025-01-20 DOI:10.1007/s10532-025-10110-y
Yu-Ting Song, Napapat Sitthikitpanya, Nikannapas Usmanbaha, Alissara Reungsang, Chen-Yeon Chu
{"title":"Optimization of polyhydroxyalkanoate (PHA) production from biohythane pilot plant effluent by Cupriavidus necator TISTR 1335","authors":"Yu-Ting Song,&nbsp;Napapat Sitthikitpanya,&nbsp;Nikannapas Usmanbaha,&nbsp;Alissara Reungsang,&nbsp;Chen-Yeon Chu","doi":"10.1007/s10532-025-10110-y","DOIUrl":null,"url":null,"abstract":"<div><p>Bioplastics, particularly polyhydroxyalkanoates (PHAs), are emerging as promising alternatives to traditional materials due to their biodegradability. This study focuses on the production of PHAs as bioplastics using effluent from hydrogen production in a two-stage Biohythane Pilot Plant, which provides a low-cost substrate. The aim is to optimize production conditions, with <i>Cupriavidus necator</i> TISTR 1335 being used as the PHA producer. Utilizing Response Surface Methodology-Central Composite Design, we explored optimal conditions, revealing peak PHA production at a substrate concentration of 33.51 g COD/L and a pH of 6.87. The predicted optimal PHA concentration was at 3.05 g/L within the established model, closely matching the experimentally validated value of 3.02 g/L, with the overall usage rate of reducing sugars approximately 50–60%. This study underscores the importance of optimizing PHA production conditions and paving the way toward large-scale PHA production.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"36 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodegradation","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10532-025-10110-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bioplastics, particularly polyhydroxyalkanoates (PHAs), are emerging as promising alternatives to traditional materials due to their biodegradability. This study focuses on the production of PHAs as bioplastics using effluent from hydrogen production in a two-stage Biohythane Pilot Plant, which provides a low-cost substrate. The aim is to optimize production conditions, with Cupriavidus necator TISTR 1335 being used as the PHA producer. Utilizing Response Surface Methodology-Central Composite Design, we explored optimal conditions, revealing peak PHA production at a substrate concentration of 33.51 g COD/L and a pH of 6.87. The predicted optimal PHA concentration was at 3.05 g/L within the established model, closely matching the experimentally validated value of 3.02 g/L, with the overall usage rate of reducing sugars approximately 50–60%. This study underscores the importance of optimizing PHA production conditions and paving the way toward large-scale PHA production.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cupriavidus necator tist1335生物乙烷中试废水生产聚羟基烷酸酯(PHA)的优化
生物塑料,特别是聚羟基烷酸酯(pha),由于其可生物降解性,正成为传统材料的有希望的替代品。本研究的重点是在一个两阶段的生物乙烷中试工厂中利用氢气生产的废水生产pha作为生物塑料,该工厂提供了一种低成本的基质。目的是优化生产条件,以Cupriavidus necator TISTR 1335作为PHA生产者。利用响应面法-中心复合设计,我们探索了最佳条件,发现底物浓度为33.51 g COD/L, pH为6.87时PHA产量最高。在建立的模型内,预测的最佳PHA浓度为3.05 g/L,与实验验证值3.02 g/L非常接近,总体还原糖利用率约为50-60%。这项研究强调了优化PHA生产条件和为PHA大规模生产铺平道路的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biodegradation
Biodegradation 工程技术-生物工程与应用微生物
CiteScore
5.60
自引率
0.00%
发文量
36
审稿时长
6 months
期刊介绍: Biodegradation publishes papers, reviews and mini-reviews on the biotransformation, mineralization, detoxification, recycling, amelioration or treatment of chemicals or waste materials by naturally-occurring microbial strains, microbial associations, or recombinant organisms. Coverage spans a range of topics, including Biochemistry of biodegradative pathways; Genetics of biodegradative organisms and development of recombinant biodegrading organisms; Molecular biology-based studies of biodegradative microbial communities; Enhancement of naturally-occurring biodegradative properties and activities. Also featured are novel applications of biodegradation and biotransformation technology, to soil, water, sewage, heavy metals and radionuclides, organohalogens, high-COD wastes, straight-, branched-chain and aromatic hydrocarbons; Coverage extends to design and scale-up of laboratory processes and bioreactor systems. Also offered are papers on economic and legal aspects of biological treatment of waste.
期刊最新文献
Valorization of chicken feathers for polyhydroxyalkanoates production using Rohodococcus quinshengii LS18 and the biodegradation studies with the extracted polymer and its blends. Isolation, characterization, and mycostimulation of fungi for the degradation of polycyclic aromatic hydrocarbons at a superfund site. Optimization of polyhydroxyalkanoate (PHA) production from biohythane pilot plant effluent by Cupriavidus necator TISTR 1335 Advances in waste-derived functional materials for PFAS remediation Exploring the intricate studies on low-density polyethylene (LDPE) biodegradation by Bacillus cereus AP-01, isolated from the gut of Styrofoam-fed Tenebrio molitor larvae
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1