Isolation, characterization, and mycostimulation of fungi for the degradation of polycyclic aromatic hydrocarbons at a superfund site.

IF 3.1 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biodegradation Pub Date : 2025-01-24 DOI:10.1007/s10532-024-10106-0
Joshua Crittenden, Daniel Raudabaugh, Claudia K Gunsch
{"title":"Isolation, characterization, and mycostimulation of fungi for the degradation of polycyclic aromatic hydrocarbons at a superfund site.","authors":"Joshua Crittenden, Daniel Raudabaugh, Claudia K Gunsch","doi":"10.1007/s10532-024-10106-0","DOIUrl":null,"url":null,"abstract":"<p><p>Mycoremediation is a biological treatment approach that relies on fungi to transform environmental pollutants into intermediates with lower environmental burden. Basidiomycetes have commonly been used as the target fungal phylum for bioaugmentation in mycoremediation, however this phylum has been found to be unreliable when used at scale in the field. In this study, we isolated, characterized, and identified potential polycyclic aromatic hydrocarbon (PAH) degrading fungal isolates from creosote-contaminated sediment in the Elizabeth River, Virginia. Our goal was to identify non-basidiomycete PAH degrading fungi. A total of 132 isolates were isolated, of which the overwhelming majority belonged to the phylum Ascomycota. Isolates were screened for their ability to produce known PAH degrading enzymes, particularly laccase and manganese-dependent peroxidases, and to transform model PAH compounds [fluoranthene, phenanthrene, pyrene and benzo(a)pyrene]. Fungal isolates were subsequently biostimulated using complex amendments including chicken feathers, wheat seeds, grasshoppers, and maple saw dust. Following biostimulation, laccase expression and PAH transformation were assessed. The grasshopper amendment was found to yield the highest laccase upregulation improvement with a maximum increase of 18.9% for the Paraphaeosphaeria isolate. The Septoriella and Trichoderma isolates exposed to the chitin-based grasshopper amendment demonstrated an increase in PAH removal. Septoriella sp. increased its transformation of fluoranthene (44%), pyrene (54.2%, and benzo(a)pyrene (48.7%), while there was a 58.3% increase in the removal of benzo(a)pyrene by Trichoderma sp. While the results from this study demonstrate the potential of indigenous fungi to be biostimulated for the removal of PAHs, additional investigation is needed to determine if the response to the chitin-based grasshopper mycostimulation can be translated from the bench to the field.</p>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"36 1","pages":"15"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761828/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodegradation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10532-024-10106-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mycoremediation is a biological treatment approach that relies on fungi to transform environmental pollutants into intermediates with lower environmental burden. Basidiomycetes have commonly been used as the target fungal phylum for bioaugmentation in mycoremediation, however this phylum has been found to be unreliable when used at scale in the field. In this study, we isolated, characterized, and identified potential polycyclic aromatic hydrocarbon (PAH) degrading fungal isolates from creosote-contaminated sediment in the Elizabeth River, Virginia. Our goal was to identify non-basidiomycete PAH degrading fungi. A total of 132 isolates were isolated, of which the overwhelming majority belonged to the phylum Ascomycota. Isolates were screened for their ability to produce known PAH degrading enzymes, particularly laccase and manganese-dependent peroxidases, and to transform model PAH compounds [fluoranthene, phenanthrene, pyrene and benzo(a)pyrene]. Fungal isolates were subsequently biostimulated using complex amendments including chicken feathers, wheat seeds, grasshoppers, and maple saw dust. Following biostimulation, laccase expression and PAH transformation were assessed. The grasshopper amendment was found to yield the highest laccase upregulation improvement with a maximum increase of 18.9% for the Paraphaeosphaeria isolate. The Septoriella and Trichoderma isolates exposed to the chitin-based grasshopper amendment demonstrated an increase in PAH removal. Septoriella sp. increased its transformation of fluoranthene (44%), pyrene (54.2%, and benzo(a)pyrene (48.7%), while there was a 58.3% increase in the removal of benzo(a)pyrene by Trichoderma sp. While the results from this study demonstrate the potential of indigenous fungi to be biostimulated for the removal of PAHs, additional investigation is needed to determine if the response to the chitin-based grasshopper mycostimulation can be translated from the bench to the field.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biodegradation
Biodegradation 工程技术-生物工程与应用微生物
CiteScore
5.60
自引率
0.00%
发文量
36
审稿时长
6 months
期刊介绍: Biodegradation publishes papers, reviews and mini-reviews on the biotransformation, mineralization, detoxification, recycling, amelioration or treatment of chemicals or waste materials by naturally-occurring microbial strains, microbial associations, or recombinant organisms. Coverage spans a range of topics, including Biochemistry of biodegradative pathways; Genetics of biodegradative organisms and development of recombinant biodegrading organisms; Molecular biology-based studies of biodegradative microbial communities; Enhancement of naturally-occurring biodegradative properties and activities. Also featured are novel applications of biodegradation and biotransformation technology, to soil, water, sewage, heavy metals and radionuclides, organohalogens, high-COD wastes, straight-, branched-chain and aromatic hydrocarbons; Coverage extends to design and scale-up of laboratory processes and bioreactor systems. Also offered are papers on economic and legal aspects of biological treatment of waste.
期刊最新文献
Valorization of chicken feathers for polyhydroxyalkanoates production using Rohodococcus quinshengii LS18 and the biodegradation studies with the extracted polymer and its blends. Isolation, characterization, and mycostimulation of fungi for the degradation of polycyclic aromatic hydrocarbons at a superfund site. Optimization of polyhydroxyalkanoate (PHA) production from biohythane pilot plant effluent by Cupriavidus necator TISTR 1335 Advances in waste-derived functional materials for PFAS remediation Exploring the intricate studies on low-density polyethylene (LDPE) biodegradation by Bacillus cereus AP-01, isolated from the gut of Styrofoam-fed Tenebrio molitor larvae
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1