Victoria Banas, Mostafa A Elfawal, Bruce A Rosa, Matthew Mahoney, Jacquelyn Kauffman, Emily Goetz, Paulina Chen, Raffi V Aroian, Makedonka Mitreva, James W Janetka
{"title":"Discovery of Human PIM Kinase Inhibitors as a Class of Anthelmintic Drugs to Treat Intestinal Nematode Infections.","authors":"Victoria Banas, Mostafa A Elfawal, Bruce A Rosa, Matthew Mahoney, Jacquelyn Kauffman, Emily Goetz, Paulina Chen, Raffi V Aroian, Makedonka Mitreva, James W Janetka","doi":"10.1021/acsinfecdis.4c00864","DOIUrl":null,"url":null,"abstract":"<p><p>Soil-transmitted helminth (STH) infections affect one-fourth of the global population and pose a significant threat to human and animal health, with limited treatment options and emerging drug resistance. <i>Trichuris trichiura</i> (whipworm) stands out as a neglected disease, necessitating new drugs to address this unmet medical need. We discovered that several different chemical series of related human Provirus Integration sites for Moloney murine leukemia virus (PIM) family kinase inhibitors possess potent anthelmintic activity by using whole-worm motility assays. Systematic structure-activity relationship (SAR) studies based on the <i>pan</i>-PIM kinase inhibitor CX-6258 were conducted to identify compounds displaying improved <i>in vitro</i> motility inhibition of both adult hookworm (<i>Ancylostoma ceylanicum</i>) and adult whipworm (<i>Trichuris muris</i>) nematodes. A broad kinase selectivity screen of >450 human kinases confirms PIM1 kinase and others as potential targets for CX-6258 and analogues thereof. In addition, we demonstrated that CX-6258 significantly reduced worm burden and egg counts in the <i>T. muris</i> infection model of mice, establishing it as a new oral small molecule anthelmintic therapeutic.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsinfecdis.4c00864","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Soil-transmitted helminth (STH) infections affect one-fourth of the global population and pose a significant threat to human and animal health, with limited treatment options and emerging drug resistance. Trichuris trichiura (whipworm) stands out as a neglected disease, necessitating new drugs to address this unmet medical need. We discovered that several different chemical series of related human Provirus Integration sites for Moloney murine leukemia virus (PIM) family kinase inhibitors possess potent anthelmintic activity by using whole-worm motility assays. Systematic structure-activity relationship (SAR) studies based on the pan-PIM kinase inhibitor CX-6258 were conducted to identify compounds displaying improved in vitro motility inhibition of both adult hookworm (Ancylostoma ceylanicum) and adult whipworm (Trichuris muris) nematodes. A broad kinase selectivity screen of >450 human kinases confirms PIM1 kinase and others as potential targets for CX-6258 and analogues thereof. In addition, we demonstrated that CX-6258 significantly reduced worm burden and egg counts in the T. muris infection model of mice, establishing it as a new oral small molecule anthelmintic therapeutic.
期刊介绍:
ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to:
* Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials.
* Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets.
* Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance.
* Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents.
* Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota.
* Small molecule vaccine adjuvants for infectious disease.
* Viral and bacterial biochemistry and molecular biology.