Electrically Modulated Multilevel Optical Chirality in GdFeCo Thin Films.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-12-16 eCollection Date: 2025-01-14 DOI:10.1021/acsaelm.4c01642
Jun-Xiao Lin, Bo-Jun Chen, Shih-Min Hung, Wei-Hsiang Liao, Michel Hehn, Shih-Jye Sun, Yu-Ying Chang, Thomas Hauet, Julius Hohlfeld, Stéphane Mangin, Hua-Shu Hsu
{"title":"Electrically Modulated Multilevel Optical Chirality in GdFeCo Thin Films.","authors":"Jun-Xiao Lin, Bo-Jun Chen, Shih-Min Hung, Wei-Hsiang Liao, Michel Hehn, Shih-Jye Sun, Yu-Ying Chang, Thomas Hauet, Julius Hohlfeld, Stéphane Mangin, Hua-Shu Hsu","doi":"10.1021/acsaelm.4c01642","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces a simple approach to dynamically control multilevel optical ellipticity in ferrimagnetic GdFeCo alloys by switching the spin orientation through Joule heating induced by electrical current, with the assistance of a low magnetic field of 3.5 mT. It is demonstrated that selecting specific compositions of Gd <sub><i>x</i></sub> (FeCo)<sub>100-<i>x</i></sub> alloys, with magnetic compensation temperatures near or above room temperature, allows for significant manipulation of the circular dichroism (CD) effect. This control enables the transformation of transmitted light from linearly polarized to elliptically polarized or the reversal of the rotation direction of elliptically polarized light across the photon energy range from visible (vis) to ultraviolet (UV). The efficacy of this method is rooted in the dominant contributions of FeCo to the CD effect in the vis-to-UV energy range. Because the magnetization of FeCo remains relatively independent of the temperature, substantial optical ellipticity is maintained for optical device applications, regardless of whether the compensation temperature is approached or crossed. Our results highlight the potential of GdFeCo thin films in chiral optics and demonstrate the selective contributions of rare-earth transition-metal elements to the CD effects, facilitating the design of advanced optical devices leveraging energy-resolved CD phenomena.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"7 1","pages":"177-184"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11736793/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsaelm.4c01642","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/14 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a simple approach to dynamically control multilevel optical ellipticity in ferrimagnetic GdFeCo alloys by switching the spin orientation through Joule heating induced by electrical current, with the assistance of a low magnetic field of 3.5 mT. It is demonstrated that selecting specific compositions of Gd x (FeCo)100-x alloys, with magnetic compensation temperatures near or above room temperature, allows for significant manipulation of the circular dichroism (CD) effect. This control enables the transformation of transmitted light from linearly polarized to elliptically polarized or the reversal of the rotation direction of elliptically polarized light across the photon energy range from visible (vis) to ultraviolet (UV). The efficacy of this method is rooted in the dominant contributions of FeCo to the CD effect in the vis-to-UV energy range. Because the magnetization of FeCo remains relatively independent of the temperature, substantial optical ellipticity is maintained for optical device applications, regardless of whether the compensation temperature is approached or crossed. Our results highlight the potential of GdFeCo thin films in chiral optics and demonstrate the selective contributions of rare-earth transition-metal elements to the CD effects, facilitating the design of advanced optical devices leveraging energy-resolved CD phenomena.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
期刊最新文献
"Nano-In-Nano" Schottky Diodes Fabricated by Combining Self-Aligned Nanogap Patterning with Bottom-Up ZnO Nanowire Growth. Electrically Modulated Multilevel Optical Chirality in GdFeCo Thin Films. Understanding the Effect of Electron Irradiation on WS2 Nanotube Devices to Improve Prototyping Routines. Ge Epitaxy at Ultralow Growth Temperatures Enabled by a Pristine Growth Environment. What Sir William Battle Found: Observations Beyond his Sign.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1