Khalid M Alkharfy, Ajaz Ahmad, Mohammad Raish, Maha F Alenazy
{"title":"Thymoquinone Mediates Müller Cell Apoptosis via miR-29b/SP1 Pathway: A Potential Therapeutic Approach in Diabetic Retinopathy.","authors":"Khalid M Alkharfy, Ajaz Ahmad, Mohammad Raish, Maha F Alenazy","doi":"10.1055/a-2507-5528","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to explore the therapeutic potential of thymoquinone (TQ) in DR by assessing its effects on Müller cell apoptosis through modulation of the miR-29b/SP1 pathway in a diabetic animal model.Healthy C57BL/6 mice (25 g) were used in the study. Retinal samples were collected from both normal and diabetic mice subjected to various treatments: TQ (1 mg/kg/day), glibenclamide (GLB, 250 mg/kg/day), sitagliptin (STG, 10 mg/kg/day), and metformin (MET, 5 mg/kg/day) over a period of 28 days. The study measured miR-29b and SP1 mRNA levels using qRT-PCR. Protein expressions of SP1, Bax, and bcl-2 were analyzed through western blotting, while Caspase-3 activity using an ELISA assay kit, and apoptosis levels by annexin V.TQ administration resulted in a 52% reduction in blood glucose levels. Similarly, GLB, STG, and MET treatments reduced blood glucose by 60%, 57%, and 61%, respectively (<i>p<0.05</i>). In addition, TQ upregulated miR-29b by 51.28% and downregulated SP1 mRNA by 32.52% (<i>p<0.05</i>). Bax protein expression levels were decreased by 64.99%, while Bcl-2 protein expression increased by 62.92% in the TQ treatment group as compared to the untreated diabetic controls. Furthermore, Caspase-3 activity was downregulated by 40.03% with TQ treatment (<i>p<0.05</i>). Interestingly, the effect TQ on SP1 mRNA expression was inhibited by a miR-29b blocker (<i>p<0.05</i>), while an miR-29b mimic enhanced this effect; this was associated with a mitigation of apoptosis of retinal Müller cells as measured by flow cytometry (<i>p<0.05</i>).These results indicate that TQ might be a possible option for DR <i>via</i> its effect on the miR-29b/SP1 pathway; and therefore, playing a significant role in the mechanism against cell death.</p>","PeriodicalId":11451,"journal":{"name":"Drug Research","volume":" ","pages":"76-83"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/a-2507-5528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to explore the therapeutic potential of thymoquinone (TQ) in DR by assessing its effects on Müller cell apoptosis through modulation of the miR-29b/SP1 pathway in a diabetic animal model.Healthy C57BL/6 mice (25 g) were used in the study. Retinal samples were collected from both normal and diabetic mice subjected to various treatments: TQ (1 mg/kg/day), glibenclamide (GLB, 250 mg/kg/day), sitagliptin (STG, 10 mg/kg/day), and metformin (MET, 5 mg/kg/day) over a period of 28 days. The study measured miR-29b and SP1 mRNA levels using qRT-PCR. Protein expressions of SP1, Bax, and bcl-2 were analyzed through western blotting, while Caspase-3 activity using an ELISA assay kit, and apoptosis levels by annexin V.TQ administration resulted in a 52% reduction in blood glucose levels. Similarly, GLB, STG, and MET treatments reduced blood glucose by 60%, 57%, and 61%, respectively (p<0.05). In addition, TQ upregulated miR-29b by 51.28% and downregulated SP1 mRNA by 32.52% (p<0.05). Bax protein expression levels were decreased by 64.99%, while Bcl-2 protein expression increased by 62.92% in the TQ treatment group as compared to the untreated diabetic controls. Furthermore, Caspase-3 activity was downregulated by 40.03% with TQ treatment (p<0.05). Interestingly, the effect TQ on SP1 mRNA expression was inhibited by a miR-29b blocker (p<0.05), while an miR-29b mimic enhanced this effect; this was associated with a mitigation of apoptosis of retinal Müller cells as measured by flow cytometry (p<0.05).These results indicate that TQ might be a possible option for DR via its effect on the miR-29b/SP1 pathway; and therefore, playing a significant role in the mechanism against cell death.
期刊介绍:
Drug Research (formerly Arzneimittelforschung) is an international peer-reviewed journal with expedited processing times presenting the very latest research results related to novel and established drug molecules and the evaluation of new drug development. A key focus of the publication is translational medicine and the application of biological discoveries in the development of drugs for use in the clinical environment. Articles and experimental data from across the field of drug research address not only the issue of drug discovery, but also the mathematical and statistical methods for evaluating results from industrial investigations and clinical trials. Publishing twelve times a year, Drug Research includes original research articles as well as reviews, commentaries and short communications in the following areas: analytics applied to clinical trials chemistry and biochemistry clinical and experimental pharmacology drug interactions efficacy testing pharmacodynamics pharmacokinetics teratology toxicology.