{"title":"Mechanism study on the enhancement of bile acid-binding capacity in corn by-product juice via <i>Lactiplantibacillus plantarum</i> HY127 fermentation.","authors":"Huanyong Lv, Xiaohui Tang, Jian Zhang, Menghan Ma, Xinyi Li, Zhenjie Zheng, Yunhe Xu, Lili Zhang","doi":"10.1016/j.fochx.2024.102111","DOIUrl":null,"url":null,"abstract":"<p><p>Hyperlipidemia is a common endocrine metabolic disease in humans. Long-term medications often have adverse effects, making the search for safer and more effective treatments crucial. This study aimed to explore the impacts and mechanisms of <i>Lactiplantibacillus plantarum</i> HY127 fermentation on enhancing bile acid-binding capacity (BABC). We fermented corn by-product juice (CBJ) by HY127 and investigated the BABC of HY127 bacterial cells and their metabolites. Our results indicated that HY127 cells (95.25 %) played a major role in enhancing BABC, with metabolites (31.50 %-66.41 %) also contributing. Compared to unfermented CBJ, the contents of phenolics, flavonoids, polysaccharides, and organic acids were significantly higher. Non-targeted metabolomics revealed upregulated amino acids, alkaloids, terpenoids, and other bioactive substances associated with BABC in the supernatant. This study confirmed that HY127 fermentation enhances the BABC of CBJ (increased by 32.02 %-78.76 %), providing a research foundation and technical reference for the development of LAB-fermented corn by-product beverages with hypolipidemic activities.</p>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"25 ","pages":"102111"},"PeriodicalIF":6.5000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742556/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry: X","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.fochx.2024.102111","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Hyperlipidemia is a common endocrine metabolic disease in humans. Long-term medications often have adverse effects, making the search for safer and more effective treatments crucial. This study aimed to explore the impacts and mechanisms of Lactiplantibacillus plantarum HY127 fermentation on enhancing bile acid-binding capacity (BABC). We fermented corn by-product juice (CBJ) by HY127 and investigated the BABC of HY127 bacterial cells and their metabolites. Our results indicated that HY127 cells (95.25 %) played a major role in enhancing BABC, with metabolites (31.50 %-66.41 %) also contributing. Compared to unfermented CBJ, the contents of phenolics, flavonoids, polysaccharides, and organic acids were significantly higher. Non-targeted metabolomics revealed upregulated amino acids, alkaloids, terpenoids, and other bioactive substances associated with BABC in the supernatant. This study confirmed that HY127 fermentation enhances the BABC of CBJ (increased by 32.02 %-78.76 %), providing a research foundation and technical reference for the development of LAB-fermented corn by-product beverages with hypolipidemic activities.
期刊介绍:
Food Chemistry: X, one of three Open Access companion journals to Food Chemistry, follows the same aims, scope, and peer-review process. It focuses on papers advancing food and biochemistry or analytical methods, prioritizing research novelty. Manuscript evaluation considers novelty, scientific rigor, field advancement, and reader interest. Excluded are studies on food molecular sciences or disease cure/prevention. Topics include food component chemistry, bioactives, processing effects, additives, contaminants, and analytical methods. The journal welcome Analytical Papers addressing food microbiology, sensory aspects, and more, emphasizing new methods with robust validation and applicability to diverse foods or regions.