{"title":"FLOWERING LOCUS C-like mediates low-ambient-temperature-induced late flowering in chrysanthemum.","authors":"Qian Hu, Mengru Yin, Zheng Gao, Zixin Zhang, Yuqing Zhu, Rongqian Hu, Hua Cheng, Gaofeng Liu, Sumei Chen, Fadi Chen, Jiafu Jiang","doi":"10.1093/jxb/eraf019","DOIUrl":null,"url":null,"abstract":"<p><p>The flowering time of Chrysanthemum morifolium predominantly depends on day length but is also sensitive to ambient temperature. However, the mechanisms underlying the response of chrysanthemum to ambient temperature are mainly unknown. This study identified a MADS-box transcription factor called CmFLC-like, a representative low ambient temperature-responsive factor induced in chrysanthemum leaves and shoot apical meristems at 15°C. Subsequently, CmFLC-like localizes to the cell nucleus and membrane and functions as a transcriptional repressor. CmFLC-like overexpression made plants more sensitive to low-temperature-induced late flowering, whereas the chimeric activator CmFLC-like-VP64 was less sensitive at 15°C, indicating that CmFLC-like was involved in thermosensory flowering. Transcriptome profiling of CmFLC-like transgenic plants suggested that the potential target genes for low ambient temperature-responsive CmFLC-like regulation are predominantly flowering integrators, MADS-box transcription factors, and AP2 genes. Subsequent examination revealed that the orchestrated repression of CmAFL1 and CmFTL3 by CmFLC-like was mediated by its direct binding to the CArG-box element of their promoters. This study offers novel insights into the molecular mechanisms underlying chrysanthemum flowering and highlights the essential role of CmFLC-like proteins in the thermosensory pathway.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/eraf019","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The flowering time of Chrysanthemum morifolium predominantly depends on day length but is also sensitive to ambient temperature. However, the mechanisms underlying the response of chrysanthemum to ambient temperature are mainly unknown. This study identified a MADS-box transcription factor called CmFLC-like, a representative low ambient temperature-responsive factor induced in chrysanthemum leaves and shoot apical meristems at 15°C. Subsequently, CmFLC-like localizes to the cell nucleus and membrane and functions as a transcriptional repressor. CmFLC-like overexpression made plants more sensitive to low-temperature-induced late flowering, whereas the chimeric activator CmFLC-like-VP64 was less sensitive at 15°C, indicating that CmFLC-like was involved in thermosensory flowering. Transcriptome profiling of CmFLC-like transgenic plants suggested that the potential target genes for low ambient temperature-responsive CmFLC-like regulation are predominantly flowering integrators, MADS-box transcription factors, and AP2 genes. Subsequent examination revealed that the orchestrated repression of CmAFL1 and CmFTL3 by CmFLC-like was mediated by its direct binding to the CArG-box element of their promoters. This study offers novel insights into the molecular mechanisms underlying chrysanthemum flowering and highlights the essential role of CmFLC-like proteins in the thermosensory pathway.
期刊介绍:
The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology.
Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.